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1. AIMS AND METHODS

Low level aerial surveys are used to collect a wide variety of
data. In many circumstances, they are much faster and cheaper than
surveys of similar accuracy carried out on the ground, and on the other
hand they can collect more detailed information than is possible with
satellite observations. Data may be collected by direct observation by
trained observers, by aerial photography, or both, and information may be
obtained simultaneously on different features of the area. The survey may
be used to estimate total numbers of animals or buildings and total areas
under crops. It may also be used to produce maps showing relative
densities over the area, and successive surveys may estimate changes in
total populations, or changes in distribution such as animal migrations.

These various aims of an aerial survey may be, to some extent in
conflict. The ideal procedure for collecting one type of data may be
unsuitable for another, and when a survey has several objectives some
compromise must be sought, depending on the estimates required and their
relative importance. It must not be expected that the same type of survey
will be ideal for all purposes.

a) Types of data.

The different types of data collected in an aerial survey present
different problems in observation and interpretation.

(i) Crop areas.

Estimation of areas under different crops, or of different types of
terrain, is extremely difficult from observer reports, and nearly always
requires aerial photography. Observers may be able to identify different
types, perhaps more reliably than is possible from a photograph, but
accurate estimates of area cannot be made by eye. Such estimates may be
based on a complete photographic record of the sample area, or on
photographs of those parts where the crop is identified.

Measuring field areas on photographs is difficult and
time-consuming, and can be seriously inaccurate. Often more accurate
estimates can be based on the proportion of line transects that fall in
areas under the crop. This method is particularly suited to aerial survey
data. Usually, the sample consists of straight strips across the area,
and the line down the middle of the strip can be regarded as a line
transect across the area. The proportion of these lines corresponding to
a particular crop is then an estimate of the proportion of the total area
under the crop.

An alternative to line transects for this purpose is a dot count.
The photographed area is sampled by a fixed number of points - usually on
a regular grid, though random sampling is also possible - and the
proportion of the area under the crop is estimated as the proportion of
dots falling on the parts of the photograph identified as corresponding to
the crop. This method was used, for example, in the Bauchi State Survey
(RIM, 1984).




(ii) Counts of buildings.

Buildings tend to occur in clusters, and the variability of counts
between sampling units is correspondingly high. Further, the variability
is related to the mean, so that the usual sampling theory, based on the
normal distribution, is suspect. The use of the t distribution to give
confidence limits assumes a constant variance, and this is unjustified.

For large samples, this is not important; the central limit
theorem ensures that total counts in large samples will have an
approximately normal distribution. For small samples, or for mapping
density, this may not be so, and confidence intervals may be unreliable.
Possible modifications to the statistical procedure, especially involving
transformations, will be discussed later.

Other problems involve the exact definition of a building or
building type. It is important that this should be framed unambiguously,
so that there is seldom doubt about whether a particular building should
be included. There is also some difficulty in counting a large group of
buildings, but this may be alleviated by repeated overflying and by
photography. Often, the survey is concerned only with rural habitations;
groups of any considerable size are not included.

(iii) Wild animals.

These present the same problems of clustering, often in an
exaggerated form. Animals are clustered in herds, often varying greatly
in size, and the herds themselves may be clustered. Some species are
found in very large herds, and population estimates depend critically on
how many of these herds are included in the sample. They are mobile, and
may be disturbed by the aircraft. Counting biases are difficult to
eliminate. Observer training and photography are important, but cannot
compensate for animals that are unobserved because they are under cover or
obscured by other animals. The problem of bias in counting will be
discussed in more detail later. In general, counts of wild animals
present the most difficult problems in conducting and analysing aerial
surveys. Furthermore, for this type of data, other methods of sampling
involve even more intractible difficulties.

(iv) Domestic animals.

The problems here are the same as for wild animals, but various
features make accurate estimates rather easier. More may be known about
their distribution and movements, at least if they are attached to
permanent settlements rather than associated with nomadic herdsmen. There
are no domestic animals where there is no human population, and a
knowledge of the distribution and movements of the human population may
make it easier to sample the area more efficiently for estimating domestic
animal numbers. Finally, it is easier to get accurate estimates for
selected areas by ''ground-truthing"; ground counts of wild animals are no
more reliably accurate, in general, than aerial counts.



Nevertheless, counts of domestis animals still present grave
difficulties. Herd size may vary less, but herd clustering is still more
of a problem, and large-scale movement may take place seasonally, or over
longer periods.

b) Aims

A sample survey may be intended primarily to obtain a single
estimate of a population value in the area, such as the total number of
cattle or the total area under maize. The estimate should be as accurate
as possible, and should include an estimate of its own accuracy. Sampling
theory is mainly concerned with this sort of problem; bias should be
avoided, the sample should be representative of the population,
satisfactory error estimates should be available, and so on. The theory
is well understood, and is set out in textbooks, such as Yates, 1981.
Here it will be discussed only in the particular context of aerial survey.

A sample over an area naturally lends itself to the construction of
maps. These may be general purpose maps, showing different types of
terrain or husbandry, or single-feature maps, showing areas of
concentration of particular species of animal or types of crop. The
construction of contour maps is discussed in some detail later. The main
point to come out of the discussion is the advantage of systematic samples
over random samples. When a single estimate is required, there are
arguments in favour of random, or stratified random, sampling - though
even then systematic samples are often to be preferred. For mapping
purposes, all the advantages lie with systematic samples.

Where the main purpose of a survey is to estimate changes,
special considerations apply. In the first place, biases tend to cancel
out. Specifically, if successive surveys each underestimate a population
by 10%, the percentage change in the population will be estimated without
bias; if they involve the same absolute error, the absolute change will
be estimated without bias. This implies that successive surveys should be
conducted in exactly the same way; an improvement in technique in the
second survey may give a better estimate, but will bias the estimate of
the change.

Further, the samples should, if possible, be identical, covering
exactly the same sampling units. In practice, the flight-lines and the
grid-squares will not coincide exactly because of navigational variation,
but the units nominally the same in the two samples will at least be
closely related. The estimate can then be based on the changes in those
units - the method of paired comparisons - and is likely to be much more
accurate as a result. This is particularly important when sampling static
objects such as buildings; the advantage is much less for mobile animal
populations.

These remarks illustrate the point that the best technique for
answering one question may not be suitable for another. Planning a
survey, or a series of surveys, must take account of the information
wanted and its relative importance. Sometimes it may be possible to
enlarge the scope or modify the technique in later surveys without making
comparison with earlier work impossible, but care is always needed.




2. BIAS AND OTHER ERRORS.

Errors in estimates based on samples are of two types: random
errors and bias. Random errors depend on the exact sampling units
selected. If the sampling procedure is repeated with re-randomization,
the random errors will tend to average out. In a single sample, however,
there are sampling errors, and the sample should be chosen so that they
are as small as possible, and so that their magnitude can be inferred from
the observations. Random errors of sample estimates can be reduced by
stratification, by systematic sampling, and by simply taking larger
samples (Yates,1981). There are also methods of adjustment that may
increase the accuracy of estimates after the sample has been taken.

An aerial survey may cover country for which accurate maps are
available, or country that has also been surveyed by satellite. The
information available from these is much less detailed than that from the
aerial survey, but may indicate ways in which the sample selected was
‘unrepresentative. Suppose the map makes it possible to divide the area
into several different types of country, and that these are well defined
so that the proportion of the area occupied by each can be accurately
determined. The proportion of the sampling units falling in each type
will not be exactly the same, and if the different types are associated
with different densities of whatever is being estimated, errors will be
introduced. If for technical reasons, such as flying problems, a
particular type of habitat is underrepresented, the estimates may be
biased.

The procedure for correcting them is straightforward, and exactly
analogous to the analysis of stratified samples. Separate estimates are
made for each type of country, and are combined by weighting according to
the true proportions, as estimated from the map or satellite data. Just
as in stratified sampling, the estimates of standard error and confidence
intervals are based on the variability between sample units within each
type. This leads, in general, to adjusted estimates with lower standard
errors.

Thus,large-scale supplementary information can be used to reduce
random errors. Usually, the adjustments will not be large; a sample of
reasonable size, whether random or systematic, is unlikely to be seriously
unrepresentative of the area. Nevertheless, it is important to be able to
check the point. It is important that the supplementary information used
is accurate and up-to-date; if the proportions used in the adjustment are
wrong, a bias will be introduced and errors increased rather than reduced.



Sources of bias.

Bias in aerial survey has been widely studied, and the main sources
are well known; for extensive accounts see Norton-Griffiths, 1978; ILCA,
1979. The main errors arise from variations in aircraft position relative
to the ground, and from errors in identifying and counting objects on the
ground.

Variations in aircraft height imply variation in the width of the
strip observed or photographed, leading to errors in estimates. The
importance of an accurate continuous check on height is now widely
recognized, and provided such a record is kept, adjustment is easy.
Banking can also produce errors, but they are usually of small importance
when the area is covered in long transects.

Counting errors are the main source of inaccuracy in population
estimates by aerial survey. Nearly all errors of this type lead to
underestimation. They may be briefly listed:

Counting animals outside the sample area / omitting animals in the
area.

Undercounting large groups.

Failure to observe small groups.

Missing animals under cover.

Missing animals obscured by other animals.

Observer training can greatly reduce errors in the first three
categories. Further, photographs of large herds can be studied at leisure
and counted much more accurately than when animals and aircraft are moving
rapidly. It is then possible to make appropriate corrections. The
corrections are, of course, specific to the individual observers, and a
single observer may give different biases at different times. Probably
the best practice, when sufficient counts corresponding to countable
photographs are available, is to estimate the correction separately for
each observer on each day.

Animals under cover are much more difficult to estimate. The
record - whether photographic or of observer's reports - should give an
indication of the type of cover, whether it could obscure animals or
buildings, and what proportion of the surface is covered. This indicates
the possibility of bias, but unless something is known about the
probability that animals are in the open or under cover, no reliable
correction is possible. It is possible to give some idea of the effect of
these errors on estimates, making suitable assumptions about the
proportion observed in different types of vegetation. Thus, the Gongola
report (RIM,1984) shows the errors that would have arisen if the
proportion observed in dense cover had been 0.5, 0.25 or O0.l. In this
case, the effects were fairly small, suggesting that bias of this type
could not have greatly affected the conclusions.

Again, supplementary information may be used to remove bias; in
this case, it is detailed information from expensive, small-scale, ground
surveys. The idea is to get an accurate count of animals in certain
sample units, estimate the bias, and assume that it applies to
other,similar, parts of the sample.




This is not easy. In the first place, accurate ground estimates of
numbers of buildings, and probably of domestic animals, are possible, but
for wild animals ground estimates may be subject to biases just as great
as aerial counts. Secondly, such counts are much more expensive than
aerial sampling, and can be used on only a small proportion of the sample.
Even if the bias can be accurately estimated for these units, applying the
same correction to other parts of the sample may give misleading results.

Where ground surveys are used to estimate and correct counting
biases, it is important that they should cover all the types of country in
the area studied. The application of a bias correction suitable in one
area to another with different characteristics may result in even greater
bias.

In conclusion, biases from variation in the height and bank of
aircraft can be corrected, provided accurate height records are kept.
Biases due to observer miscounting can be reduced by training, and
corrected by comparison with photographs. Biases associated with objects
invisible from the aircraft are much less tractable, and can be corrected
only when reliable ground-truthing is possible.



3, TYPES OF SAMPLE.

Sampling units.
a). Quadrat samples.

A quadrat is a compact area, selected randomly or according to some
other system, used as a sampling unit. Quadrat sampling is very widely
used in botany and soil science, and in ground sampling of animal
populations.

For aerial survey, however, quadrat sampling has serious
disadvantages. It is difficult to identify the quadrat boundaries on the
ground, and errors may arise if the prescribed area is over— or
under-estimated, or if it is displaced. Further, aerial examination of a
quadrat usually involves several passes; flying time spent in turning,
and in moving from quadrat to quadrat, is wasted. It has occasionally
been used, particularly for counting animal populations in wooded country,
where the disturbance caused by repeated overflying may make reliable
counting easier. Nevertheless, it is unsuitable for general aerial survey
work, and will not be further discussed here.

b). Strip samples.

A strip sample is a band of constant width across the whole area
sampled, or across the whole stratum in the case of stratified sampling.
This type of sampling unit is the one most widely used in aerial surveys.
It has obvious advantages from the point of view of efficiency; a minimum
of time is spent in unproductive flying, and it is comparatively easy to
fly a straight course at constant height, and to observe a strip of known
constant width on the ground. Provided a check is kept on height,
ad justment can be made for minor variations, as has already been
explained.

The direction of flight should ideally be chosen in the light of
what is known about the shape and characteristics of the area sampled. In
practice, it is usually dictated by practical considerations related to
landing places and type of country. If there is obviously more
variability in one direction than in another, it is desirable to orient
the strips in that direction, so that each strip is fairly representative
of the whole area, and the variation between strips is relatively small.
A long, thin area is usually better sampled in long strips, so that errors
at the ends are less important.

In general, the strips will be of different length. This makes the
analysis slightly more complicated than that for equal quadrats, but the
appropriate statistical method (ratio sampling, or Jolly's method 2) is
well known.

c). Line intercepts.

A line intercept is a line - not a strip of finite width - drawn
across the whole area. Line intercept sampling is particularly useful for
estimating the proportion of the area covered by different types of crops
or cultivation. The proportion of the total length falling in particular




types gives, under very general assumptions, an unbiased estimate of the
proportion of the total area corresponding to those types. This avoids
the difficulty of trying to measure or estimate irregular areas.

Line intercept sampling can often be associated with strip
sampling. If a complete photographic record of the strip is obtained, a
line drawn down the middle of the strip constitutes a line intercept, and
can be used for estimating coverage proportions. Similarly, if an
observer notes each time the type of country or crop changes in the middle
of the strip, estimation - though less accurate - is possible.

It is also possible to use line intercepts to estimate numbers of
objects, provided the size distribution of the objects is known. This
technique is useful in certain applications, but seems to have no
advantages in aerial survey work.

d). Grid samples.

A grid sample consists of samples at points on a regular lattice.
When an area is sampled in strips, observations are usually recorded on
successive fixed lengths of the strip, known as grid cells. The centres
of these cells lie on a regular grid - often a square grid, in which the
length of the cells is equal to the distance between transects. The grid
cells then constitute a systematic sample of the two-dimensional area.
Samples of this sort have been widely used in various contexts, and
appropriate methods of analysis have been devised. They make it possible
to allow for variability along the line of flight and at right angles to
it. In fact, in sampling a rectangular area, the lines constituting the
first grid cells, the second grid cells, and so on, have the same status
in the sample as the lines of flight.

The grid cells of an aerial survey differ from systematic point
samples over an area; each cell is a rectangle, touching the neighbouring
cells on the flight path, and separated from the corresponding cells on
the flight paths on either side. Nevertheless, for purposes of analysis
observations on the cell are regarded as representative of conditions at
the centre-point, and error estimates and mapping should treat the cells
in exactly the same way as a systematic point sample.

This contradicts Norton-Griffiths (1981) who writes:- "Grid cells
... are not sarpling units, nor are they used in analysis ...". He does
not give reasons for this statement, and it is hard to see any
justification for it. Grid cells - as he agrees - do give information
about spatial pattern, and this information can be used to obtain better
error estimates. In particular, if the line intercepts have,
unfortunately, been taken perpendicular to the main direction of
variation, the error variance will be grossly overestimated if this
information is not used.

In later sections methods for error estimation for systematic
samples of this sort will be discussed. They are also used for the
construction of maps, again regarding the grid cell as typical of the area
around its centye point.



e). Accuracy of dot counts.

Suppose N points are taken in an area, and r of them fall in a
certain type of couniry - a particular crop, for example. Then,
obviously, r/N is an estimate of the proportion of the area occupied by
that type. The problem is to choose N so that the proportion is estimated
with known accuracy.

If the true proportion is P, and p=r/N, then the variance of p is
P(1-P)/N, and this may be used to construct a confidence interval for P.
There are two important cases that may be considered separately, when P is
near 3, and when P is very small (or very close to 1).

When P=3, the variance of p is maximum, and the appropriate
95% confidence interval is p +/- 1/ N. Thus, if N=100, the confidence
interval extends 0.1 on either side of the observed proportion p.
Choosing N=100 ensures that the confidence interval will be no longer than
this; if P is not %, the interval will be rather shorter, but in fact
the accuracy does not vary much. If P=0.8 or P=0.2, the interval is 0.8/
N on either side of the observed value.

In calculating the confidence interval, P is not known, and the
variance is usually estimated as p(l-p)/N, replacing F by the estimate
p=r/N. This approximation is quite satisfactory if P is not very small or
very close to 1, and if N is reasonably large.

The variance given above is exact whatever the value of P, but when
P is very small the normal approximation is invalid, and the use of p in
place of P in the variance may give absurd results, unless N is very
large. The estimate of P is more accurate in absolute terms, but much
larger relatively - a confidence interval of length 0.2 is not very useful
when the estimate of P is, say, 0.04.

In this situation, r, the number of points of the type of interest,
may be regarded as a Poisson variable. Confidence intervals can then be
found for the expected number, NP. These may most easily be read from a
table.
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95% confidence intervals for the mean of a Poisson distribution, where r
is the sample count.




Notice that these intervals are not symmetrically on either side of r. In
a sample of 100, a count of 1 suggests that P lies between 0.0024 and
0.0557, while the best estimate of P is 0.01.

The inverse problem, of deciding how large a sample is needed for
given accuracy, is now clearer. For a count of 7, the confidence interval
extends from roughly half to double the estimate. This is the sort of
accuracy that can be expected if N=100 and P=0.07, or if N=1000 and
P=0.007. Clearly, for small fractions reasonable accuracy demands very
large samples - and that may introduce further complications because
adjacent points can no longer be regarded as independent.

A related question is the probability of missing an uncommon
feature altogether.. This, again, can be calculated from the Poisson
distribution. If the true proportion is P, the probability that it is
unobserved is exp(-NP). This is 0.05 when NP=3, and 0.025 when NP=3.69.
This corresponds to the first line of the table above.

All these calculations assume that the sample points are placed at
random. In practice, they will generally lie on a regular grid. This
will give rather greater accuracy when the areas of interest are
clustered.
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Sample structure.
a). Types of sample.

A naive biologist, asked whether he would prefer to estimate
population properties from a random or systematic sample, would almost
certainly prefer the latter. With certain reservations, he would be
right. A systematic sample from a "patchy" population ensures that all
parts are represented nearly in the right proportions, whereas a random
sample may, by chance, fall in areas of high or low density more often
than the proportion of such areas in the population would suggest. Almost
certainly the systematic sample will give the more accurate estimates.

This is true of total population estimates, for example of animals
or buildings, and for estimates of the total area under cultivation or
under certain crops. The advantages of systematic sampling are even more
marked when the chief aim of the survey is to produce a map. In this
case, systematic sampling ensures that no large areas are completely
missed, and that the precision of the local estimates is more or less the
same throughout the area.

There is one important caveat. When there are regular periodic
structures in the popolation, systematic sawmpling can be misleading. Fig
1 represents an area drained by valleys, roughly parallel and equally
spaced. A systematic sample of transects parallel to these valleys could
fall entirely along the ridges, or entirely in the valleys close to the
streams. Such a sample could give grossly biased estimates of, for
example, the proportion of forest, the prevalence of water, or the numbers
of any animals tending to concentrate in different types of terrain.
Further, no examination of the sample values would give any suggestion of
a bias.

Once this situation is recognized, it should cause only minor
problems. If maps suggest variation of this type, transects should be
taken across the lines (N-S in Fig 1), or, if that is impossible,
transects should be arranged so that all types of terrain are fairly
represented. If it is recognized only during the survey, extra sampling
may be needed. The chances of such a regular structure coinciding with the
sampling pattern, and being unnoticed, are remote.

The advantages of systematic sampling may be appreciated from a
simplified example (Fig 2). Consider a square area, with the Eastern half
having very high density and the Western half very low density of the
species to be sampled. Suppose the sample is to consist of ten transects,
and consider four sampling schemes:-

a) Random transects E-W
b) Systematic transects E-W
c) Random transects N-S
d) Systematic transects N-S

Here, a) and b) may be expected to give satisfactory results of similar
accuracy. c) will be wildly inaccurate, with some high and some 1low
counts. The mean count will be critically dependent on the number of
transects falling in the high-density half, and the high variability will
be reflected in a high variance. d), on the other hand, will always have
five transects in each half, and will be just as accurate as a) or b).
If, however, the variance is estimated as if it were a random sample, the
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Fig. 3.1. Systematic sampling by E-H flight

lines may be grossly biased.

Low density High density

Fig 3.2. For E-W transects random and
systematic samples give similar accuracy.

For N-S transects, systematic sampling gives
much less variable estimates.



apparent error will be just as high as c) - in fact, on average, higher.

0f course, if the situation is recognized beforehand, E-W transects
would be chosen. The example, however, illustrates important properties
of systematic samples:-

(1) In sampling spatially heterogeneous material, systematic
samples often ;give much more accurate estimates.

(ii) The variability of the observations does not reflect this
improvement in accuracy. In fact, precisely when systematic sampling has
most advantages, the variability among observations tends to be greater
than that of random samples. We have, therefore, to find a method of
estimating accuracy, giving standard errors or confidence intervals, that
reflects reasonably well the true reliability of the results of systematic
sampling.

h) Precision and accuracy.

A distinction is often made between the precision and the
accuracy of an estimate. Precision refers to the repeatibility of the
result; if repeated samples, using the same technique, give closely
similar results, then the precision of the method is high.  Accuracy
refers to the variability of the estimate about the true value. If an
aerial survey counts only 10% of animals of a particular species, but
counts that proportion quite consistently, it may give estimates of high
precision, but obviously of very low accuracy. High accuracy implies high
precision, but a biased estimate may have high precision but low accuracy.

In practice, the standard errors attached to estimates refer to the
precision rather than the accuracy. Of course, biases are avoided as far
as possible, or corrected by an appropriate adjustment, but the final
value assumes that bias has been eliminated. A confidence interval, by
definition, has a certain probability of including the true value, but the
calculation cannot take account of an unrecognized bias.

The distinction is important in some contexts, but not in all. A
hiased estimate of total population size, or of total area under a crop,
is misleading, and it must be realised that the error attached to the
estimate assumes that bias has been effectively removed. Biased estimates
of high precision can, however give estimates of the changes between
successive samples, and maps based on such estimates can give good
estimates of relative densities of animals or crops. In such cases, the
bias at least tends to cancel out.
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c) Random samples.

The main advantage of random samples is the simplicity of
estimating the error variance. For random samples of equal area, the
usual variance is unbiased.

Thus, if a sample of observations y(l) ...y(n) are taken, covering
an area a of a total area A,the total of y in A is estimated as

Y = (A/a)dv.

Here, the values of y may represent, for example, counts of animals, or
areas under a particular crop.

The variance of Y is then estimated as
var(Y) = (A* /a® )(1l-a/A)ns’
and the standard error S.E.(Y) is the square root of this variance.

Here, 1-a/A is the "finite population correction"; it is usually
close to 1 and can often be ignored. In any case, it is not strictly
applicable to estimates based on counts of moving animals.
s® is the estimated variance of the random variation in y.

Finally, a confidence interval may be calculated for Y.
Y+1.96 S.E.(Y)

represents a 957 confidence interval. For small samples, 1.96 is replaced
by the appropriate percentage point of t.

Notice that s’ represents the variance of the random part of y;
that is, the deviation of the value observed from the true value of the
area represented by a point chosen by the sampling rule. For random
samples, this is estimated as

2 (y=y)® /(n-1),

but this estimate is quite inappropriate for the points of a systematic
sample.

When samples are of unequal size, as for example when random
transects are taken across an irregular area, the estimate and its
variance are those obtained from the ratio method (Jolly's method 2).

Once again, this must be modified to give reasonable estimates for
Systematic transects.
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d) Systematic samples.

A systematic sample of an area consists of equally spaced transects
across the area, or of samples centred at the points of a regular grid.
Usually, the location of the sample is chosen at random; that is, the
position of one of the transects, or grid points, is random, and the rest
of the sample is based on that position. This means that estimates based
on the sample are technically unbiased. Repeating the sample with newly
randomized starting points would give unbiased estimates and an unbiased
error estimate.

That, however, is an academic point. In practice, estimates and
errors are based on a single systematic sample. Provided that the sort of
periodic effects discussed above do not occur, estimates based on the
systematic sample will be more reliable than those based on a random
sample. The problem is to derive reliable error estimates from a single
systematic sample.

Consider first the simplest case of systematic transects of equal
length. The model underlving the sample structure is

y(1) = m(i) + e(d)

Where m(i) is the unknown true value of y(i) averaged over the part of the
area represented by sample i, and e(i) is the random error. The usual
formulae for random sampling then apply, if we can find an estimate of
var(e).

No exact unbiased estimate is available, but it is easy to find
approximate estimates by making assumptions about the form of m(i).
Further, such estimates will always be conservative - that is, will give
overestimates of variance and confidence limits that are rather too wide -
provided that there are no periodic effects.

The simplest assumption is one of local linearity
m(i) =[ m(i-1) +m(i+l1) 1/2
If this were strictly true,
s =S[2y(d) - y(E-1) - y(i+D]* /6n*

would be an unbiased estimate of the variance of e, where n* = n-2, Of
course, this is a very restrictive assumption, but it may well be
approximately true for most of the transects. If this is so, the error
estimate will be only slightly biased upwards.

The corresponding estimate for grid samples is:-—
32 =Z[Z‘Y(i’j) - Y(i—]-’j) - Y(i+1’j) - Y(ivj_l) - Y(j-’j'"]-)]z /201’1*

where n* is the number of points of the grid with four nearest neighbours
(which depends on the size and shape of the area sampled). The variance
is based on the difference between the sample value at (i,j) and the
average of its four neighbours (provided they all fall in the sample).
The sum of squares of these differences, with an appropriate divisor,
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gives an estimate that will be unbiased if the assumption of local

linearity holds, and is only slightly biased upwards in many practical
situations.

This is the simplest error estimate for grid samples, based on sets
of five points, and for aerial survey work, particularly when dealing with
counts of high variability, it dis probably the best. More elaborate
estimates may be used. For squares of nine points, numbered ARERE
Yg by rows, one may calculate the differences:-

12y5—2(Y2+YA+Y6+Y8)—(yl+Y3+Y7+Y9)

and the sum of squares of these differences, divided by 164n*, is an
estimate of variance. Here, the assumption of local linearity is the

same, but the weighting given to the four nearest neighbours and to the
diagonal neighbours is arbitrary.

Yates (1981) suggests a scheme of "balanced differences' based on
16 points - a 4x4 square. The scheme of weights is shown in Fig. 3.
Unlike the other arrangements discussed, this is not centred on a single
square; that is not important, but the centred schemes have the advantage
that a single outlying observation shows up more clearly.

All these methods lose some information because they are restricted
to points with neighbours - the value of n* may be much smaller than n if
the total number of grid squares is small, or if the outline is very
irregular. The simpler differencing schemes lose less information in this
way, and for the type of highly variable data often collected in aerial
surveys smooth, large-scale trends are uncommon.

When the value of n¥ is small, say less than 20, satisfactory error
estimates are impossible to obtain. This, however, is seldom the case.
Error estimates are required for small sample areas when estimates of
local density are to be mapped, but the variance estimate can then be
based on the whole survey, or at least on the whole stratum of which the
small area forms a part.

When an estimate of s® has been obtained, standard errors and
confidence limits are calculated exactly as for rﬁgg?m samples. Thus the
S.E. of the mean of n observations is s/n and a confidence
interval can be calculated in the usual way. The only difference in the
interpretation of random and systematic samples lies in the estimate of
the error variance, the random variability not associated with large-scale
spatial variation.
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Fig. 3.3. VYates’ "balanced difference” scheme for
a square of 16 points. The appropriate diviser -
the sum of squares of coefficients - is 6.25.




e) Transformations.

In the analysis of experimental data, transformations are widely
used; in sampling theory scarcely ever. The reason is clear. A main
objective of sampling is to obtain an estimate that is a simple linear
function of the observations, and transformations introduce bias. In work
on experimental analysis, something has been done on obtaining nearly
unbiased estimates from means of transformed data (Quenouille, 1955), but
in sampling theory this is rather pointless. The main effect of
transformation is to reduce the influence of extreme observations, such as
a count of a large herd of animals, and in estimating animal populations
this is certainly not desirable.

There are two aspects of the sampling problem in which
transformations may be useful, especially in the context of estimating
animal populations from systematic aerial samples. In the first place,
the assumption of local linearity, used to eliminate (or reduce) the
systematic element in the variation of y, may be more nearly valid for
suitably transformed counts. Secondly, the assumption of normality used
in obtaining confidence intervals for the final estimate may be
unrealistic; usually y and the estimate Y will both be skewed to the
right, and unless samples are very large a symmetrical confidence interval
may be misleading.

The transformation generally used for counts of this type is
z = log(a + y)

Here, log may represent either the common or natural logarithm, and a is a
small constant, necessary for the transformation of zero counts. Usually,
a is taken as 1, but any positive value may be chosen, and it may be
possible to stabilize the variance more effectively by a different choice.

Sometimes a square root transformation is used for counts, but it
is appropriate only where the error is of the Poisson form, with the
variance proportional to the mean. This is certainly not true for counts
of gregarious animals, and the transformation does not provide such simple
confidence intervals as the log form.

For observations in the iform of proportions, the arc sine

transformation, z = arcsin(y?) is sometimes used. This 1is
theoretically justified when the observations follow a binomial
distribution; that is, when the proportions are counts of independent

events out of a fixed number of trials. Under these circumstances, the
transformation has a variance-stabilizing effect. There is no real
justification for wusing this transformation merely because the
observations are in the form of proportions, though in the analysis of
experimental results it is quite often used for such data on a purely ad
hoc basis. In sampling theory, it has the disadvantages of all
non-linear transformations, and there seems to be no case for ever using
it.

In systematic sampling, the variance is estimated from the
deviations of interior points from the average of neighbouring points. In
the previous section, it was suggested that this average should be a
simple arithmetic mean of the four nearest neighbours, or a weighted
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arithmetic mean of the nearest neighbours and diagonal neighbours. There
is no reason, however, why some non-linear average should not be used.
Consider, for example, the following scheme:-—

(i) For each point (i,j) with four nearest neighbours, take the
mean value of z = log(a + y) for the four nearest neighbours.

(ii) Transform this average back by calculating Y = exp(z)+k, where
k is chosen so that the mean values of y and Y, taken over the n* interior
points, are the same.

(iii) Estimate the variance by
s* =&(y-Y)*/(n*-1)

This gives an estimate of variance that differs from the one
suggested in the last section only in the way in which the "predicted
value" Y is calculated. (The value of k makes suitable allowance for the
bias in the geometric mean of y+a compared with the arithmetic mean, and
the divisor n*-1 is used because the means of y and Y have been made
exactly equal). The estimate will be better if it is more effective in
eliminating the systematic component of the variability. Roughly
speaking, this will be the case if the transformed variable z = log(y+a)
varies more smoothly over the sample area than does the original variable

ye.

The log transformation is only one of many that could be used in
this way. Provided there are no periodic effects, all the estimates of
variance are biased downwards, because they do not remove the
systematic component of variance completely. In large samples, it is
reasonable to conclude that the smallest variance estimate is the best,
since it removes the systematic component most effectively. In smaller
samples, however, there is a danger of introducing a downward bias by
selecting a method that gives a low estimate merely by chance.

A second application of transformations in sampling theory is in
the calculation of confidence intervals. If the variable being studied
has a very skew distribution - as have counts of animals or dwellings, as
a rule - the usual confidence interval for the mean may be misleading. It
is true, of course, that in sufficiently large samples the distribution of
the mean approaches the normal distribution, but for data of this sort it
may do so very slowly. The 95% confidence interval may then have a true
probability different from 0.95 of including the true mean, and in
particular the probabilities of lying entirely above and entirely below
the true value, nominally both 23%, may be quite different from each
other. The calculated confidence interval is then no longer a "central"
confidence interval.

The situation may be improved by a transformation. If x is an
estimate of a parameter, a confidence interval for any function of x, say
f(x), has the appropriate probability of including the same function of
the parameter. Thus we can calculate a confidence interval for f(x), and
assert that the parameter lies between the inversetransformatio of the
ends of the interval. Further, if f(x) is more nearly normally
distributed than x, the confidence interval will be more reliable.
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Consider, for example, the function f(x) = log (x), where x is
a sample mean with S.E. s/n®’. ; Then it is easy to6 show that the
standard error of f(x) is s/xn?. Confidence limits for f(x) are
obtained as f(x) 1.96 times this S.E. (note that there is no
justification for using t in this case), and this may be transformed back
to a confidence interval for x by taking exponentials.

wel Alternatively, the power transformation f(x) = x"¥ has S.E.
WX s/n?, and a confidence interval may be constructed for f(x)
and transformed back by raising to the power -w. This, again, gives an
approximate confidence interval for x, and if the distribution of f(x) is
nearer to a normal distribution than that of x, the approximation is
likely to be better, giving a size closer to the nominal 957, or whatever
other level is chosen, and a more nearly equal probability of lying
completely above or below the true value.

Experience suggests that when the data are counts, confidence
intervals are much better approximations when transformations of this type
are used. For the typical highly skewed distributions, where a log
transformation is used in experimental work for the data, a log
transformation for the mean is useful, but a small negative power
transformation, say w=-3, is probably better.

The proposals in this section are tentative. More research is
needed, on theoretical aspects and on the practical uses of these
transformations. It is clear, however, that it is possible to improve
upon standard estimation techniques when data are grossly non-normal.
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f) Stratification.

The subdivision of a population into groups, which are then
sampled, is known as stratification. Each group, or stratum, is chosen
to be as homogeneous as possible, and to differ as much as possible from
the others. In the present context, this means that the area of the
survey is subdivided, and each subdivision is then sampled, using random
or systematic sampling. The estimates from each of the sections are then
combined to give an estimate for the whole area. This has two main
advantages:-

(i) If the total areas of the strata are known, the variability of
estimates depends on the variability within the strata, and if these have
been sucessfully chosen to be homogeneous, this may be much smaller than
the variability of the whole population. Under these circumstances, a
stratified random sample gives much more accurate results than an
unstratified random sample.

(ii) The sampling fraction can be chosen to be different in different
strata, and this may give more accurate estimates for the same cost of
sampling. The optimum sampling fraction 1is proportional to variance
within the stratum, and inversely proportional to cost.

In aerial survey work, stratification is only worth while when a
very large area is sampled, and it is easily divisible into regions that
are very different one from another. The first advantage refers
specifically to the comparison of random and stratified random samples;
it does not apply to systematic samples. If random sampling is chosen,
however, the advantages can be very great.

One possibility that is often mentioned here is that of post hoc
stratification. Sometimes it becomes obvious only after the sample has
been taken that some areas have high density and some low density of the
character being studied. It may be easy to break the area up into high
and low density strata, basing the division on the observations, not on
previous knowledge of the terrain. Analysis of the results as if they
constituted a genuine stratified random sample may then give much lower
error estimates.

Is this legitimate? It should be obvious that it can lead to an
underestimate of error; simply dividing observations into different
ranges and estimating error as if these were strata is clearly wrong.
Further, the exact divisions between these "strata" are arbitrary, and so
their areas are not known exactly.

Nevertheless, the technique should not be rejected out of hand.
When it is clear that there is large-scale variation of this sort, post
hoc stratification may give better estimates, and more reasonable
variances, than the usual treatment of a random samnle. Tt is important,
though, that the strata are large and compact; subdivision of a
large-scale survey into blocks of a hundred or so observations is unlikely
to be misleading, but finer subdivision could well be.

The second advantage applies to systematic as well as to random
samples. In counting objects, the main difference in variability-is
associated with differences in abundance. The same is true of estimating
proportions of area, at least when the proportions are small. The point
is therefore not to waste effort in intensive surveys of deserted areas.
Further, if some areas are difficult (more costly) to sample efficiently,
they should be sampled less intensively.

It must be said, however, that the advantage is very slight unless
differences among strata are extreme. A constant sampling fraction is
appropriate unless heterogeneity is extreme.
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g) Fitting distributions.

A problem of some theoretical interest is that of fitting
statistical distributions to the observations. This cannot lead to better
estimates of totals or mean values, nor can it improve the quality of
maps; it may, however, give alternative error estimates based on the
distributions fitted, and it may throw some light on the factors affecting
the distributions. Assefa and Bille (SRDU unpublished report) have
studied histograms of counts of animals and dwellings, and attempted to
fit smooth curves to the histograms.

The fitting of distributions usually assumes that the observations
in the sample can be regarded as independent. This assumption is
obviously unlikely to be valid for data of this sort; there is
environmental variation over the area studied, and adjacent observations
are likely to be positively correlated. If a distribution is found to
fit the observations, there remains some doubt  about how it should be
interpreted.

If the objects counted behave independently, and if the area
sampled can be regarded as uniform, a Poisson distribution of counts would
be expected. Neither of these conditions are likely to apply, and the
resulting distribution is likely to show much greater variability than the
Poisson distribution (which has the variance equal to the mean).

Discrete distributions for counts of this sort have been suggested;
they fall in the general category of '"contagious" distributions, of which
the most familiar are the compound Poisson distributions. These
distributions are derived from Poisson distributions in which the mean
value itself varies according to some known distribution. Thus, if
objects occur randomly but the average density varies over the area
sampled, one might expect a distribution of this type.

The best known of these compound distributions is the negative
binomial distribution. The mean of the Poisson distribution is supposed
to follow a gamma distribution - the type to which the chi-squared
distribution belongs - and this gives a distribution with two parameters
in which the variance is greater than the mean. This distribution has
been fitted to a great variety of data of different types, such as
accident data, disease incidence and plant counts.

It is tempting to fit such a distribution to counts, and then to
try to interpret the underlying gamma distribution in terms of
environmental heterogeneity, but this ignores the possible correlations
between observations and the geographical features of the wvariation.
There is a further difficulty; the distance between sample units and
their size will affect the distribution in ways that are not easy to
predict. Typically, combining observations into groups of, say, four will
give different parameters, and interpretation will be complicated.

Assefa and Bille have realised these difficulties and tried to
circumvent them, but we feel they have not altogether succeeded. In fact,
we are not convinced that there is any useful purpose in fitting
distributions to data of this sort. The spatial variation, the random

variation and the tendency to group are all combining to produce the final
set of data, and fitting a distribution does not really help to sort them
out,
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h) Precision ol systematic samples.

In general, systematic samples may be expected to give higher
precision than random samples of the same area. The improvement will be
greatest for large, highly heterogeneous, areas; a systematic sample
ensures that all parts of the area are represented in the sample, in
nearly the right proportions, while this balance may well not hold in a
random sample. It is difficult to judge, however, how much is gained by
taking systematic samples. If a systematic sample is available, an
estimate of variance may be based on an appropriate differencing method,
as described. This estimate is in general biased upwards, so that
calculations based on it are conservative; with a suitable choice of
estimate, the bias should be fairly small. A systematic sample gives no
direct information about the precision that would be given by random
sampling. Precisely because the systematic sample ensures that all parts
are fairly represented, the variance among the observations of a
systematic sample — treated as if they had been taken at random - tends to
overestimate the variance associated with random sampling.

Of course, if a number of systematic samples and a number of random
samples were taken of the same area at the same time, a direct comparison
of variability would be possible. This might be an interesting exercise
in simulation, but is certainly not a practical proposition. Any attempt
to estimate the practical gain in precision must be based on single
systematic samples. For small samples, with data as variable as counts of
animals or dwellings typically are, no such comparison is of much value.
For sufficiently large samples, however, a comparison of the variance
estimates for a systematic sample calculated by the differencing method
and calculated as if the sample were random gives at least some estimate
of the relative precision of random and systematic sampling. It must be
realised that both estimates are biased, but the biases are in the same
direction, and for very large samples are relatively small.

The following table gives, for ten surveys taken over four large
areas, the standard error as a percentage of the mean, based on Jolly's
method 2 - which is appropriate for a sample based on random transects -
and differences from a four-point moving average, as described above. 1In
all cases, the survey was based on a systematic sample of parallel and
equally spaced flight lines, and the individual observations corresponded
to equal section of those lines, centred on a square grid.

For each survey, the data were counts of cattle, and the estimated
mean density , also shown in the table, varies by a factor of ten.

Gongola has an area of 43,875 square kilometres, Gourma 83,100 square

kilometres, and Niger 81,155 square kilometres.

In every case, with one exception, the differencing method gives a
lower estimate of the standard error, usually by a factor of about 1.4.
This means that the sample size to attain the same precision would be
twice as large for a random sample as for a systematic sample. In Mali,
where the average counts are higher, the advantage is even greater.

If we can accept that these -figures are a fair comparison of
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precision, and that these eight large surveys are reasonably typical of
the results to be expected from large-scale counts of cattle, the
conclusion is obvious. We may expect the same precision from a systematic
sample and from one based on random flight lines if the latter is twice as
large. In practice the advantage will sometimes greater and sometimes
less, but the figures leave no doubt that systematic sampling has very
large advantages for data of this sort.

Location/season 7S.E.(Jolly) 7S.E.(Diff.) Density/km’.
Gongola dry 9.6 5.4 13.6
wet 6.9 4.28 15.7
Gowma  dry 10.0 6.75 4.13
wet 6.9 6.92 5.40
Niger May 7.5 5.62 3.42
Oct 6.0 5.63 4,49
Sept 9.7 : 7.50 4.00
Mali Oct 15.7 8.05 22.81
Mar 14.2 7.65 36.42
Jun 11.0 7.71 22.77

Table 3.1. A comparison of the precision of random and systematic
sampling. See text.
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4 ,CONTOURING AND SMOOTHING.

a) Contouring and smoothing.

One of the aims of an aerial survey may be to produce a map showing
the relative abundance of particular animals, crops or types of building
over an area. Such a map may be presented in various ways, but all depend
essentially on some process equivalent to drawing contours of equal
density. '

It is convenient to divide the process into two stages, which are
conceptually different, though they may be performed in a single step.
Interpolation consists in estimating values at points where actual

observations are not available - usually some sort of weighted mean of the
nearest observations. Smoothing involves adjusting the actual
observations to reflect, as far as possible, the underlying trend, while
reducing the random variation in the observation.

Tn what follows, we shall assume that observations are made at a
point (whereas they really correspond to an area centred on that point),
and that the points lie on a regular square or rectangular grid. The
first assumption greatly simplifies the discussion without introducing any
error as large as that inherent in the sampling. The second restricts us
to systematic samples; in fact, all the methods discussed can be applied
to random observations, but the arithmetic is more difficult and the
accuracy of the map varies according to the position of the samples.

Interpolation methods were developed for use with mathematical
tables (see, for example, Pearson, 1920). The method is essentially one
of fitting a polynomial to a grid of points surrounding the point to be
estimated. When we are concerned with observations subject to random
error, elaborate techniques are inappropriate; usually the best method is
to fit a plane (by least squares) to the four points at the corners of the
rectangle in which the point is situated. Thus, given values over a
grid, it is easy to estimate the value at any point within the grid.

Contouring uses the interpolation procedure inversely, to find all
points for which the estimates have a particular value. These form smooth
curves within any grid square, and computer programs are available, with
varying degrees of sophistication, to produce smooth contour lines over
the whole area.

Obviously, interpolation by itself is unsuitable for data from a
spatial sample. The fact that a herd of animals is seen at one point on a
particular day does not mean that the prevalence of animals is very high
in that immediate neighbourhood, and falls to zero in a neighbouring
square in which no animals were seen. There is random variation in the
sampling, and, in the case of animals, random day-to-day variation. Some
smoothing is necessary, and it involves a compromise depending on the
random variation present. Undersmoothing will produce a highly irregular
map, with spurious fluctuations that are purely random; undersmoothing
will produce an over-simplified map in which real features are obscured.

b) Moving averages.

The simplest method of smoothing, developed in connection with time
series analysis, is the use of moving averages. The observed value at
each point is replaced by a weighted average of the value itself and the
observations at nearby points. As an example, one might take half the
actual value, plus one-eighth the sum of its four nearest neighbours.
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The main problem is to decide how many points to include in the
moving average, and what weights to give them. These decisions determine
the degree of smoothing, and must be made subjectively., An experienced
analyst can probably make a good guess, based on his knowledge of the type
of random variation present - but it remains a guess.

A second point is that moving averages necessarily tend to flatten
out real maximum and minimum values. The process reduces the random
errors, but also tends to flatten out the underlying trend.

Nevertheless, moving averages provide a simple and easily
understocd method of smoothing. Used with discretion, they may produce a
reasonable set of modified values at the points of the grid, and these can

then be used as the basis for contouring to give a satisfactory map.

c) Trend surfaces.

Another straightforward way of smoothing data is to fit a trend
surface. Each point of the grid is represented by Cartesian coordinates
X,y , and the observed values are fitted to some function of x and y using
regression methods. The resulting surface fits as closely as possible to
the observations in the least squares sense. Further, no special
contouring programme is needed - the fitted function has a value at every
point of the area. Smoothing and interpolation are combined in a single
process.

Unfortunately, the types of function that can be easily fitted by
these methods are very limited. Polynomials are the obvious choice, and
as far as I know the only functions to have been used in practice. They
have grave drawbacks. In the first place, the number of parameters rises
rapidly with the order of the polynomial. The general polynomial of order
k has (k+1)(k+2)/2 coefficients, and in practice that restricts the value
of k to a maximum of three or four, even for very large data sets. Even
polynomials of this order have a restricted number of maxima and minima,
and cannot adequately describe "patchy" distributions, in which abundance
depends on local soil-type or water-supply.

Further, polynomials can produce anomalous values. In particular,
if there are several adjacent zero observations, it is very probable that
the fitted polynomial will become negative. Small negative values can
simply be ignored, but are disconcerting. They can be avoided by a
suitable transformation - for example, by fitting a polynomial to z =
log(l + x), and then contouring exp(z) - 1.

In conclusion, polynomial trend surfaces work well only when the
underlying trend is simple, having, say, a linear or parabolic form in all
directions. The functions cannot give good fits to irregular, patchy,
data. This problem is well known in the one-dimensional case, and various
attempts have been made to solve it. The most promising of these is the
use of splines (Silverman, 1984). This is a technique for fitting
polynomials, usually cubics, to the data, but the fit is local - the
fitted cubics are different in different parts of the range, but are
constrained to fit smoothly together. The approach is much more flexible,
and avoids most of the drawbacks of polynomial regression. Unfortunately,
the calculations are much less easy, and the technique has not been
extended to the two-dimensional case.
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d) Kriging

The most elaborate method of constructing contour maps is known as
"kriging". It was devised in the context of mining, and has been used
particularly in the search for oil. Many of the terms used reflect this
origin. It is basically a method of estimation using weighted least
squares, based on the observed similarities among points separated by
small distances. In fact, estimated values are weighted means of nearby

‘points, but the method differs from the simpler moving average and

contouring approaches in that the weights are based on observed
relationships, rather than subjective judgment. The subjective element,
however, is not removed altogether; decisions must be made about the
degree of complexity of the model to be fitted, and these can have a
considerable effect on the eventual map.

The fundamental tool of kriging is the semivariogram. This is a
plot representing the extent to which points close together in space tend
to have similar values, The abscissa is the distance between pairs of
points; the ordinate is half the mean squared difference between
observations a distance x apart. Typically, one might expect a
semivariogram estimated from points on a square grid to look like Fig. 1.
The x values for which there are observations correspond to the distances
between pairs of points on a square grid. When x = 0, the semivariance is
zero, by definition. As x increases, the semivariance increases,
eventually tending to a limit. This limit corresponds to the variance of
an observation at a randomly chosen point in the area studied.

The semivariogram, in fact is very closely related to the
autocorrelogram widely used in time series analysis. As the
autocorrelogram falls from 1 at zero lag to zero for long lags, so the
semivariogram rises from zero to its limiting value.

Several points must be noted here. In the first place, we are
assuming that the observations constitute a "stationary" series. If there
is an obvious trend, the semiovariogram, defined as we have done
disregarding the trend, has little meaning. Secondly, the observations
are supposed to be taken at points; if, in fact, they are values for
areas, the distances between them are not simply defined, and the
variances are, at best, an average over a range of distances. Thirdly, it
is assumed that the semiovariogram depends on distance only, and that this
dependence is the same in all directions. In some circumstances, the
semiovariograms for N-S and E-W distances might be quite different.
Finally, if the sample points are random, each x value will occur only
once, and average values at fixed distances cannot be calculated. All
these complications are discussed in books and papers about the method,
and suitable modifications to the calculations have been worked out, but
for the present we shall ignore them.

The semivariogram is then used to find appropriate weightings to
estimate the value of the observed variable at any point in the area.
Since the semivariogram drops to zero at x = 0, the values at the grid
points themselves are unchanged. In fact, kriging using a semivariogram
like that in Fig. 1 is a method of interpolation, without any smoothing.
This is clearly unsuitable for the present purpose.
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This problem has long been recognized in geostatistics.
Semivariograms in practice often look more like Fig. 2 than Fig. 1. The
value at x = 0 is necessarily zero, but the values for higher values of x
seem to lie on a smooth curve that is dropping towards a value greater
than zero. There are presumably two sources of variation, one very short
range in comparison with the distances between observations, and the other
a smooth variation over longer ranges. In geostatics, this is known as
the "nugget effect", representing very small areas of high concentration,
such as gold nuggets. In the context of spatial sampling, the nugget
effect is related to the random errors of sampling, while the rest of the
semivariogram represents, mainly, the systematic variation over the area.

Sill

8 Distance

Fig. 4.1. A semivariogram; the half-variance of differences
rises from zero to a limiting value or "sill".

Nugget effect.

] Distance

Fig. 4.2, A semivariogram showing the "nugget effect”. The
curve seens to drop steadily from the sill towards a non-zero
value at-zero distance, though there must be a final sharp drop.
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The next step in the estimation process is to fit a suitable curve
to the semivariogram. When there is a clear limiting value, a "sill", as
in Fig. 1, one of two models is usually chosen:-

The exponential model
y = a(l - exp(-kx))
or the spherical model

3x/2a - x3/2a3, x{a |

y

y a, x},a.

Both models have a sill at ¥ = a; in the exponential model the
sill is approached as x tends to infinity, in the spherical model, it is
reached at x = a. There is little practical difference between the two
models, and they usually produce nearly identical estimates.

When a nugget effect is present, as in Fig. 2, the same models can
be used, modified so that y = b when x = 0. Thus they become:-

y = b+ a(l - exp(~kx))(1 - b/a)

and y = b+ (3%x/2a - x3/2a3)(1 - b/a), x<a
y=2a, x>,a
respectively.

These models can be fitted to the observed values of the
semivariance. When there is a nugget effect, the three-parameter models
are fitted to the semivariances for x + O; the nugget effect represented
by b is thus inferred from the trend of the semivariances ignoring the
zero  value. Estimation using this type of semivariogram involves
smoothing as well as interpolation; the fitted surface no longer passes
through the observations.

Thus kriging provides a method of contouring in which the degree of
smoothing is objectively determined from the semivariogram. It must be
realised, however, that the critical value b, which determines the degree
of smoothing, may not be very accurately estimated; the observed
semivariogram may be reasonably consistent with quite a large range of
values of b. The degree of smoothing is no longer a matter of guesswork,
but there 1is no guarantee that the fitted surface will accurately reflect
underlying trends with the random variation smoothed out.

The procedure of producing a fitted surface from the observations
and the semivariogram is arithmetically complex, and requires a computer
program. In principle, values are fitted by least squares, the weights
being determined from the semivariogram. The fitting process is
iterative, and involves quite heavy computation. Strictly, each fitted
value is a weighted mean of all the observations; in practice, however,
the value depends only on the nearby points. The weights attached to
points further off are so small as to be negligible. This "screening
effect" means that the values produced are usually similar to those given
by moving averages and contouring.

e) Problems in kriging.

The previous section describes the simplest form of kriging. This
involves, as has been mentioned. strong assumptions that are often
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unrealistic in practice. Many modifications have been worked out to allow
for these complications. They are available in the sophisticated computer
programs available for kriging, and are fully described in textbooks {see,
for example, Journel and Huijbrechts, 1978). In this section, they will
be mentioned very briefly.

(i) Anisotropy.

The form of the semiovariogram may depend not only on distance, but
on the direction in which the distance is measured. In geostatistics,
this is typically related to the geological formation. The correlations
between neighbouring points may not be the same in the N - S and E - W
directions. In aerial surveys, the same thing may happen as a result of
features of the terrain. More importantly, however, there is no reason to
suppose that the correlation between neighbouring grid squares on the same
transect will be the same as that between squares on adjacent transects,
even though their mid-points are the same distance apart.

It may therefore be necessary to estimate separate semivariograms
for the direction of transects and the direction at right-angles to it.
This 1is easily accomodated in kriging programs, but of course the
semivariograms will be based on fewer points and accuracy will be lost if
in fact there is homogeneity.

(ii) Random samples.

. If sampling is random, rather than systematic, the estimation of
the semivariogram is more difficult, to achieve. Again, however, the
programs can handle the problem, and produce appropriate maps. The main
disadvantage is the variable accuracy over the area. A map of variances
of estimates for a systematic sample will give relatively constant values
over the area, with some loss of accuracy near the edges. If sampling is
random there may be parts of the area that are relatively undersampled,
and estimates for these parts will be correspondingly inaccurate. When
the main purpose of the survey is to produce a map, rather than a single
estimate of a total population, the advantages of systematic sampling are
even greater.

(iii) Fitting trends.

Often the assumption of stationarity is unacceptable. There may be
an obvious trend present, of a fairly simple form, as opposed to
unstructured patchiness. In this case, it is possible to fit
simultaneously a trend surface and a superimposed stationary model. The
process is known as "universal kriging'", as opposed to "simple kriging.

This widens the choice of models available. There is an analogy
with the problems encountered in time series; a model may be fitted more
"parsimoniously" with a simple trend and a simple correlation structure
than with either separately. Again, universal kriging is an option
available in kriging programs.

(iv) Transformations.

The values used 1in a kriging program need not, of course, be the
raw observations. They may be transformed, and the map may thus be based
on transformed values, with the only difference that the contours must be
appropriately labelled. Indeed, as the method is based on least squares,
a transformation will usually be appropriate when the random error is
expected to be related to the mean. Thus, for counts of clustered
objects, the usual logarithmic transformation will often be appropriate.
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f) Conclusions.

Kriging was developed in the context of mining engineering. Here,
the cost of sampling is extremely high, observations are usually of high

accuracy, and the rewards from a reliable
Consequently, no effort is spared in carrying

map are very great.
out the best possible

statistical analysis of the data. This involves sophisticated computer
programs, and considerable skill is required in using them. The resulting
map is obtained objectively, in the sense that once decisions have been

made about the type of semiovariogram, the type
so on, the computer does the rest. The outcome

of trend, anisotropy, and
is a map of “estimated

values over the area, with a map of estimated accuracy. There is no doubt
that it is the best method available for handling this type of data.

In aerial survey work, observations are as a rule subject to much
greater random error. Sometimes the main purpose of the survey is to
produce overall estimates, and a map is a by-product, intended merely to
give a general impression of the location of areas of high density. The
nugget effect, generally a minor irritation in the original context, here
becomes a major concern - the degree of smoothing is here paramount.

In these circumstances, the the additional complication and expense
of kriging may not be judged worth while. Simpler subjective methods may

be quite adequate for the purpose, and the

analyst may prefer his

subjective  judgment to computer output based on possibly dubious

assumptions.

29




5. OTHER STATISTICAL TECHNIQUES.

Survey work is mainly involved with overall estimates.of.numbers or
areas, and with local estimates used for producing maps. The
corresponding statistical techniques form the main subject of this report.
Survey data, however, is sometimes analysed by other methods, and this
section discusses briefly some possible applications of such methods to
clarify the interpretation of survey data.

In fact, statistical analysis often stops short at giving estimates
and standard errors. More detailed analysis is perhaps felt to be
unnecessary, or unduly complicated. Nevertheless, an aerial survey
generates a considerable mass of multivariate data, at considerable
expense; if more elaborate statistical analysis can extract further
information from it, the extra effort is certainly worth while.

The main fields of application are regression analysis and
multivariate analysis. In both, the grid squares are regarded as
independent observations - that is, their spatial coordinates and any
effects of spatial correlation are ignored in the analysis - on a number
of possibly related variables. This assumption of independence is not
strictly justified, and significance tests and confidence intervals are
invalidated; these calculations should be regarded as exploratory data
analvsis, designed to generate, not test, hypotheses.

(a). Multiple regression.

The aim of multiple regression is to predict a random variable y as
2 linear function of a set of "regressor variables" x, ...
x . The "dependent variable" y might be, for example, the number of
céttle counted on a grid square, and the x-variables might represent
vegetation conditions, distance to water, number of dwellings, and so on
counted on the same square. The reference to a linear function may seem
rather restrictive, but is not so really; the x-variables need not be the
original observations, but variables constructed from them. Thus, they
might include log counts rather than raw counts, vegetation indices rather
than actual percentages of different vegetation types, and dummy variables
indicating presence or absence of a character rather than a quantitative
variable.

There is no assumption involved about the distribution of the x's.
Multiple regression is not a multivariate technique; 7y 1is the only
varisble whose distribution is of interest, and the underlying assumption
is that y is distributed with constant variance abeut the value predicted
from the x's. A transformation is often necessary to satisfy, at least
spproximately, the constant variance condition - a logarithmic
transformation is usually appropriate for counts.

In the present context, the aim of multiple regression is not so
much to obtain an accurate prediction of v, as to investigate which of the
x variables are most closely associated with it. This presents an
intractable problem. Often the x variables are themselves closely
correlated, and quite different subsets of them may work equally well in
predicting v, vet not give any improvement in prediction when theyv are
combined. This is, in the jargon of the economists, the problem of
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"multicollinearity".

The most usual way of dealing with multicollinearity is to select a
subset of the x variables that gives an adequate prediction of y - that
is, one effectively as good as could be obtained with all the x's - and
ignore the remaining x's. There may be several such subsets; if two of
the x's are highly correlated, there is no way of telling, on statistical
grounds, which one is the better predictor. That could only be determined
from samples in in other areas in which the regressor variables were less
highly correlated.

The usual method of selecting regressor variables is "stepwise'.
First, the x that correlates most strongly with y is selected, and y is
ad justed by regression on that variable. The next x variable selected is
the one that correlates best with the adjusted y, the part of y
uncorrelated with the first x. This process continues until none of the
remaining x's is strongly correlated with the adjusted y, and the x's then
in the equation are accepted as a suitable subset for the prediction of y.

This procedure is described in detail in many computer package
manuals - see, for example, the BMDP manual (Dixon, 1983). The theory is
given in Draper and Smith, 1981. A good example of the application of
stepwise multiple regression to aerial survey data is given in
Milligan,1983, which investigates the environmental conditions that most
affect density of livestock of different types.

In conclusion, multiple regression is a useful technique for
investigating relationships among the variables observed in aerial survey
work. It is important to realise, however, that relationships obtained,
whether by stepwise methods or otherwise, are not, in general, unique.
Multicollinearity is almost always a problem, and when it is present more
than one interpretation is possible. This is particularly important in
comparing relationships found in different surveys; very similar data
sets may give quite different sets of regressor variables, without any
indication of real differences in the factors that are important.
Considerable skill and experience are needed for the interpretation of the
results.
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(b) Principal components.

When data are collected on two variables, they can be usefully
represented in a scatter diagram. With more than two variables, this sort
of representation becomes increasingly difficult. Three variables may be
represented in a three-dimensional model, and further variables can be
included by using different symbols, or different colours, for different

parts of their ranges, but very soon diagrams become confusing and the
point is lost.

Multivariate data are often highly correlated, and it is reasonable
to hope that the information in a data set may reasonably be represented
in a smaller number of dimensions. A projection of the high-dimensional
plot onto a space of lower dimensions may lose very little of real value,
while reducing the random variability, or '"noise".

The most important technique for representing multivariate data in
a space of lower dimensionality is principal component analysis. Suppose
there are p variables observed. These are replaced by p new variables,
linear combinations of the original set. The first of these variables is
chosen as the linear combination that has maximum variance, subject to a
constraint on the coefficients, wusually that their sum of squares is
unity. The second is uncorrelated with the first, and has maximum
variance subject to that condition, and so on. There are altogether p of
these new variables (unless the original observations are strictly
linearly related), they are all uncorrelated, and their variances
decrease. These are the principal components.

The idea of the analysis is that the first few principal components
may account for most of the variation in the data, and the rest may be
discarded without much loss of information. In fact, the sum of the
variances of the principal components is the same as that of the original
variables, and so it is possible to calculate the percentage of the total
variance contained in the first two or three components; 1if the variances
fall rapidly, the analysis is probably successful in reducing
dimensionality without much sacrifice.

It is important to realise that the procedure is not
scale-independent. In fact, it is quite pointless to carry out this
procedure on unstandardized variables unless they are all of the same type
- for example, all proportions with similar variability, or all
logarithmically transformed counts. Before calculating principal
components, it is nearly alwavs necessary to standardize by dividing the
original variables by their standard deviations; this is equivalent to
carrying out the analysis on the correlation matrix, instead of the matrix
of variances and covariances. Further, variables should be transformed
before standardization if the distribution is very skew; again, the log
transformation is indicated for counts.

There is no simple rule about the number of components to retain
and the number to discard. Usually, those with variance less than 1
(working with the correlation matrix) can safely be ignored, and usually
it is unnecessary to consider more than three or four, but the technique
is purely empirical and there is no underlying mathematical theory.
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Each observation on the original set of variables is now replaced
by a set of values of the first, second ... principal component. Plotting
principal component values in pairs may cast some light on the structure
of the observations. For example, they may fall into fairly obvious
groups, and, particularly if the groups fall into compact clusters on the
ground, they may suggest a clustering into different types of terrain.
Further, the coefficients of the variables in the principal components may
suggest an interpretation. Thus the first principal component may have
positive coefficients for numbers of animals, number of dwellings,
nearness to water, and vegetation cover, and may be interpreted as a
contrast between rich, populous, land and poor land unable to support much
life. The other principal components must then be uncorrelated with the
first, and may contrast different types of land management.

Mapping the values of principal components may be interesting.
Because they tend to consist of sums of correlated variables, they may
have rather smoother contours than similar maps of individual variables,
and if they have a natural interpretation the maps may be very
informative.

The computational details of principal component analysis are given
in all textbooks of multivariate analysis, and the method is implemented
in all the standard computer packages. Webster (1977) has an excellent
account of their use in soil science, including their use in preparing
soil maps - a section that is closely applicable to aerial survey data.
Principal components may also be used to alleviate the multicollinearity
problem in multiple regression; see the paper by Newsome, Dudzinski and
Low in ILCA, 1981.

Again, it must be emphasized that this type of analysis is
exploratory, and little is known of its statistical properties. In
particular, the stability of principal components in samples from the same
population is a difficult area that has not been satisfactorily resolved.
There is a particular problem when two components have similar variances;
in another sample, they may be interchanged, or replaced by two quite
different linear combinations, that are nevertheless equivalent to them as
a pair. This is the problem of rotation, which plays an even larger part
in factor analvsis, but will not be discussed further here.
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(c) Canonical variables.

The multiple regression model may be extended to the relationship
between two sets of variables. This is a truly multivariate problem, and
one that arises very commonly; it may be required, for instance, to

relate numbers of animals of different species to various environmental
factors.

The appropriate statistical technique is known as canonical
correlation analysis. Given two sets of variables, say
X, eos X and ¥, ees ¥
1 P B }q

the first step is to find linear functions of the x's and y's that have
maximum correlation. There is a unique pair of such functions, subject to
arbitrary sceling factors, and they are the first canonical variables.
The second pair of cenonical variables can then be defined as the pair of
linear functions, uncorrelated with the first pair, that have maximun
correlation, and so on.

The distributional theory of canonical variables and canonical
correlations is well known, but involves assumptions that are unlikely to
he satisfied in applications in connection with aerial surveys. Like the
o her techniques discussed in this section, canonical analysis is best
regarded as an exploratory, empirical, method, that may throw some light
on the relationships between the two sets.

In general, there are p OT G, whichever is less, pairs of canonical
variables defined by the process described. The correlations between
these pairs decreases from the first onwards, and only those pairs with
high correlations need be considered. Again, the main purpcse of the
apzlvsis is to interpret these pairs of variables and so describe the
ivpes of association between the two original sets.

In this sort of analysis, the x and ¥ variables are treated in
exactly the same way. It is concerned with correlations, not with
prediction of one set from the other, nor with the effect of one set on
the other. Often, the natural interpretation of the results will be in
terms of cause and effect; environmental factors do determine the
distribution of wild and domestic animals to a great extent. This,
however, is not a mathematical property of the analvsis, which is merely
concerned with associations.

Caponical correlation analysis is a powerful technique, which has
been surprisingly little used in investigations of this sort. Webster
(1977) gives an interesting discussion of applications in soil science.
71 would seem ideally suited to the analysis of satellite data, and
perticularly to investigations of the relationships between satellite
cignzls and ground conditions. In fact, most of the Landsat methodology
je based on pattern-recognition techniques - presumably because of
constraints on computer time. See, however, Honev et al, (1981),
relating Landsat signals to observations on the vegetation in kestern
Australia.
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(d} Cluster Analy

Cluster analysis is the term used for a number of different
techniques for dividing observations into groups. The general requirement
is that group members should be as much alike as possible, on the basis of
the observations made upon them. There may also be an attempt to find
"hatural" groups, on the assumption that there is some underlying
structure that suggests a particular way of subdividing the data and a
particular number of groups. In the case of aerial survey data, however
there seems no reason for such an expectation. Cluster analysis is best
regarded as a convenient way of classifying observations into groups, with
membership of a particular group conveying as much information as possible
about the item.

The very large literature on cluster analysis cannot disguise the
fact that the methods used in practice are extremely crude and simplistic.
The first step is to define a measure of dissimilarity (or, equivalently,
of similarity). This can be thought of as a distance between points
representing the observations, and the idea is to join up points that are
close together to form compact groups. The definition of dissimilarity is
obviously crucial, and is completely subjective. Usually the
dissimilarity between two observations is based on the differences between
them on each variable; the sum of squares of these differences is the
squared Fuclidean distance between the points, and the sum of the absolute
differences is known as the City-block distance, or the Manhattan
distance. The dif{erences may be weighted in various ways. Usuelly, it
is meaningless to use the crude differences between the original
variables; some transformation may be needed, and standardization to the
came standard deviation is essential in most cases. The weights attached
to different variables are then chosen to reflect the experimenter's
views sbout the relative importance of the different variables. It is
sometimes suggested that the choice of equal weights is "objective" - it
is not, it is merely one of a2 set of possible subjective choices, and is
often adopted from inertia rather than conviction. Once weights have been
chosen, the appropriate distance is calculated.

The next step is to join the two nearest observations, then the
next two, and so on. Here a further important decision is needed; the
distance between two individual observations has been defined, but we also
heed the distance from an individual to an already formed group, and the
distance between two such groups. These distances may be defined in
various ways, and the final clustering depends critically on the
definition adopted. The three commonest definitions of the distance
between two groups are the distance between the nearest points in each
eroup, between the furthest points in each group, and the distance between
the centroids. Adopting the first option gives "single-linkage"
clustering, while the second is known as "complete-linkage". Once a
definition has been chosen, the joinig-up procedure continues. 1f there
are n individual observations, after n-r steps they fall in r groups.

The difference between single-linkage and complete-linkage
clustering shows up most obviously in the type of groups that they
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generate. When there are in fact clearly distinguished natural groups,
both methods will find them. Otherwise, complete-linkage tends to give
compact groups of similar size, while single-linkage tends to give one or
two large groups with isolated points unattached, forming single point
groups. Where there are natural groups, but they are not clearly
separated without overlap, the two types of clustering both tend to
distort the grouping, in the direction of compact, equal groups for
complete linkage, or of straggling, unequal groups for single linkage.
The centroid method is intermediate between these two exiremes, and is a
compromise intended to avoid both forms of distortion. There are a number
of other intermediate methods, claimed by their inventors to have
advantages in at least some situations.

There is one technical point of some importance. If there are ties
among the distances, so that there may have to be arbitrary decisions
about which points to join first, the structure of the resulting clusters
may be quite different according to the decisions made. This is true of
all clustering methods except single linkage. VWhen the variables
concerned are continuous, or counts of large numbers, so that ties are
unlikely, the point may seem irrelevant; but it has a further implication
that single-linkage clustering 1is l1ikely to be more robust to small
chenges in the distances, in the sense that such changes are likely to
heve only minor effects on the final clusters.

The final decision to be made is the choice of the number of
clusters. In the present context, it has already been suggested that
grouping is largely arbitrary, and the choice is primarily one of
convenience. For mapping purposes, probably 4-8 1is a suitable range of
numbers; the final choice may be guided by the dissimilarities between
the objects joined at each stage of the clustering. If there is a sharp
rise in dissimilarity, this suggests that very dissimilar objects are
being grouped, and clustering should stop before this step. Another guide
is the degree of fragmentation of the map. If the next step in combining
eroups produces a much more regular map, with fewer isolated patches, it
should probably be made.

There is a large literature on cluster analysis, and a large number
of different techniques. Manv of them are implemented in the computer
package CLUSTAN. The success of cluster analysis can be judged {from the
results; & method that gives a grouping consonant with common sense, with
groups having obvious features in common, forming reasonably compact arcas
on the ground, may be judged to have worked. Discussions of 1i1he
advantages and disadvantages of different definitions of distance &nd
different clustering techniques are largely irrelevant; usefulness of the
result is the real criterion. There is a good account of the most
important techniques in Webster (1984). This is presented in the context
of soil mapping, and much of the discussion is immediately relevant to
aerial survey methods.
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