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1 [bookmark: _Ref293828296][bookmark: _Toc183449059][bookmark: _Toc193988186][bookmark: _Toc195759368]Introduction and overview
1.1 [bookmark: _Toc183449060][bookmark: _Toc193988187][bookmark: _Toc195759369]Project objectives
The general objective of VI-Map is to assist ECDC and EU Member States with developing a set of vulnerability indices linking socio-economic and IPCC climate change projections (2030-2050), to map future European vulnerabilities at a sub- national scale for selected food-, water- and vector-borne diseases.
This objective is part of a more general effort by ECDC towards further clarifying and quantifying the links between climate change, demographic change and communicable disease. In addition to developing comprehensive risk assessments and a Handbook for National Vulnerability, Impact and Adaptation Assessments on Climate Change and Communicable Diseases, ECDC identified the need to develop decision support tools to assist ECDC and EU Member States, including EU candidate countries, in assessing and predicting these public health key vulnerabilities and in using current disease burden as a baseline for scenario building.
Vulnerabilities vary across countries, eco-climatic regions and biomes as well as within and between human host sub-populations, therefore requiring sub-national aggregated spatial outputs that these factors into consideration. Depending on the vulnerability indices under study, available Pan-European datasets offered for analysis include 1-5km raster maps, administrative boundary polygon maps and polygon maps using other zonation criteria such ecological or eco-climatic criteria.
The project is divided into two phases (lots) the first of which was focussed on preparing for modelling through literature review and data acquisition. The second phase consists of modelling the vulnerabilities; these are the subject of this document 
The activities in the second phase follow the request for service by ECDC dd. 15 July 2011 and are described in the offer submitted to ECDC on 31 October 2011. The progress of the developments in the second phase was reported during regular Skype conferences. 
The deliverables of this Phase are:
· Interim report by 15 November 2011 outlining the development and preliminary findings of one baseline and four disease-specific vulnerability indices, modelled and mapped across the EU
· Draft final report by 15 January 2012 outlining the envisioned chapters, preliminary findings, project methodology, preliminary sensitivity and uncertainty analysis, project timelines for Specific contract No. 3., and emerging conclusions. 
· All datasets and data files used by 15 January 2012.
· Final report by 15 July 2012, including updated methodology and results, sensitivity and uncertainty analysis, and final conclusions.
1.2 [bookmark: _Toc183449061][bookmark: _Toc193988188][bookmark: _Toc195759370]Vulnerability
Most simply, vulnerability is the predisposition or propensity to be adversely affected; it is the summation of the factors that influence whether adverse impacts arise when an exposure occurs.  The question of who is most vulnerable to a particulate vector-borne and zoonotic disease is one component of risk, where risk equals hazard times consequence.  Consequence is composed of who is exposed (individuals and communities) and their associated vulnerabilities (e.g. demographic, socioeconomic, and other factors).  A hazard without exposure would be low risk.  But even a small-scale hazard in a highly vulnerable population could result in high risk. Therefore, the risk of a vector-borne and zoonotic disease is a function of the hazardous exposures that can affect the incidence and geographic range of the disease, who is exposed to that hazard, and their associated vulnerability. There is a wide range of general factors that are known to increase vulnerability to a range of vector-borne and zoonotic disease, such as ineffective public health monitoring and surveillance programs. In addition, for each disease, there are specific factors that increase vulnerability; for example, older age increases the probability that exposure to Salmonella will lead to clinical disease.  
There is heightened interest in understanding how climate change could alter hazards associated with vector-borne and zoonotic diseases, and thus increasing the risks of changes in their incidence and geographic range. Increasing ambient temperature, changing precipitation patterns, increases in the frequency and intensity in flooding events can provide opportunities for increased pathogen replication, introduction of pathogens into food and water sources, or conditions conducive to pathogen transmission cycles.  
1.2.1 [bookmark: _Toc193988189][bookmark: _Toc195759371]Dimensions of vulnerability
A wide range of factors determines vulnerability, including geographic, socioeconomic, demographic, technologic, environmental, political, institutional, and past exposures (and their responses) that affect the current degree of resilience to vector-borne and zoonotic diseases.  Specific subpopulations can be more vulnerable than others because of biological sensitivity (e.g. physiological factors and medical conditions that affect sensitivity to diarrheal diseases), status of the public health infrastructure that determines access to safe water and improved sanitation, and socioeconomic factors that can increase (or decrease) the probability of exposure.  Sensitivity is an individual’s or sub-population’s increased responsiveness, primarily for biological reasons, to a particular exposure (Balbus and Malina 2009). The vulnerability of populations can vary across spatial and temporal scales (e.g. exposure-response relationships are not constant) (Bernard and Ebi 2001).
Vulnerability indices can be used to identify and provide an overview of key vulnerabilities for climate-sensitive vector borne and zoonotic diseases.  Maps based on those indices can be used to aiding planning and preparedness activities.


2 [bookmark: _Toc193988190][bookmark: _Toc195759372]Data management
The data that were used for modelling the different vulnerability indices were acquired and collected during the first phase of the project. We refer to the report of Lot 1 of the contract for more details (Ebi et al. 2011). In addition, the procedures and operations that were executed to make the data available for inclusion in the VI models are described below. All geographical map calculations were performed using ArcGIS v10 (www.esri.com).  
2.1 [bookmark: _Toc193988191][bookmark: _Toc195759373]Baseline vulnerability index
2.1.1 [bookmark: _Toc193988192][bookmark: _Toc195759374]Temperature and precipitation
Minimum and maximum monthly temperature and precipitation were obtained from raster datasets of baseline normals (www.worldclim.org) and projections (http://FutureClim.info) and were summarised to NUTS2 regions.
2.1.2 [bookmark: _Toc195759375]Purchasing power parity values
Purchasing power parity is a condition between countries where an amount of money has the same purchasing power in different countries. National level Price Level Indices relative to EU27 (NUTS1) and GDP in Purchasing Power Parity per inhabitant in 2005 (NUTS2) were obtained from Eurostat. GDP per capita was equally obtained from Eurostat 
2.1.3 [bookmark: _Toc193988193][bookmark: _Toc195759376]Per capita health care expenditure 
Healthcare expenditure per capita data for EU27 were obtained from Eurostat for 2007.
2.1.4 [bookmark: _Toc195759377]Healthcare capacity
The following reported healthcare capacity data were obtained from Eurostat and summarised to NUTS2 regions:
· Physicians per population number;
· Medical staff per population number (midwives & Nurses)
· Number of hospital beds per population number
2.2 [bookmark: _Toc193988194][bookmark: _Toc195759378]Vulnerability index for Salmonella
2.2.1 [bookmark: _Toc193988195][bookmark: _Toc195759379]Population by age group
Current population at given exact age and projected 1st January population by sex and 5-year age groups data were obtained from Eurostat. These data were then aggregated into the following age groups and summarised to NUTS2 regions:
· <1 year
· 1–4 years
· 5–17 years
· 18–39 years
· 40–64 years
· 65–79 years
· =>80 years
2.2.2 [bookmark: _Toc193988196][bookmark: _Toc195759380] Monthly daily temperature
1km minimum and mean daily temperature by month raster datasets of baseline normals (www.worldclim.org) and projections (http://FutureClim.info) were summarised to NUTS2 regions.
2.2.3 [bookmark: _Toc193988197][bookmark: _Toc195759381]Life expectancy for Salmonella
Current life expectancy at given exact age and projected 1st January population by sex and 5-year age groups data were obtained from Eurostat. These data were then aggregated into the following age groups and summarised to NUTS2 regions:
· <1 year
· 1–4 years
· 5–17 years
· 18–39 years
· 40–64 years
· 65–79 years
· =>80 years
Total Life expectancy projections to 2045 from the ESPON DEMIFER TFR* dataset (www.espon.eu) were used to project the Eurostat reported life expectancy by age group data (described above).  A linear projection was assumed to attain values at 2030 and 2050.
2.3 [bookmark: _Toc193988198][bookmark: _Toc195759382]Vulnerability index for Lyme borreliosis
2.3.1 [bookmark: _Toc193988199][bookmark: _Toc195759383]Minimum winter temperature
Minimum winter temperature was obtained from WorldClim (www.worldclim.org), using the Bioclim BIO6 variable ‘Minimum Temperature of Coldest Month’. Raster data were available for 2000 and 2050 and were linear extrapolated to 2030. Mean values with standard deviation were calculated per NUTS 2 region.
2.3.2 [bookmark: _Ref192869219][bookmark: _Toc193988202][bookmark: _Toc195759384]Broadleaf-forested areas
GlobCover landcover (http://ionia1.esrin.esa.int) classes were redefined as suitable (Yes=1, No=0) for tick habitat as described in Table 1. The population intensity as described with access to tick habitat was calculated per 1km2 grids and summarised to NUTS2 regions (Mean, Standard Deviation, Total).April-May-June average temperature
The WorldClim Bioclim BIO10 variable ‘Mean Temperature of Warmest Quarter’ was used as proxy for the April-May-June average temperature. Raster data were available for 2000 and 2050 and were linear extrapolated to 2030. Mean values with standard deviation were calculated per NUTS 2 region. 
2.3.3 [bookmark: _Toc195759385]April-May-June total precipitation
Raster data were available for 2000 and 2050 and were linear extrapolated to 2030. Mean values with standard deviation were calculated per NUTS 2 region.
2.3.4 [bookmark: _Ref192869533][bookmark: _Toc193988203][bookmark: _Toc195759386]The within 30 km weighted human population with access to rural areas 
Human population density data for 2000 at a 1km2 grid was obtained from the Global Urban-Rural Mapping project (GRUMP; http://sedac.ciesin.columbia.edu/gpw/global.jsp). For these data the total population proportion (%) per 1km2 grid was calculated. Espon population data (www.espon.eu) for 2005, 2030 and 2055 were transferred to raster layers and then multiplied with the GRUMP population proportion (%) per 1km2 grid to calculate the predicted population densities for these years at a 1km2 scale. Then a population intensity index was calculated for each 1km2 grid considering a 60km2 neighbourhood around each grid and assigning a linear weight between 1 and 0 for the increasing distance (from 0 to 30 km) from the grid to the neighbourhood border. 
2.4 [bookmark: _Toc193988204][bookmark: _Toc195759387]Vulnerability index for hanta virus
2.4.1 [bookmark: _Toc193988205][bookmark: _Toc195759388]Broadleaf covered areas
Mask of broadleaved land classes were obtained from Ionia Globcover (http://ionia1.esrin.esa.int/) and summarised per NUST2 region in terms of surface proportion (with standard deviation) and total surface covered. 

	[bookmark: _Ref188094185][bookmark: _Toc193990282][bookmark: _Toc195759356]Table 1: Reclassification of GlobCover landcover classes to suitability for tick habitat. 

	GlobCover Landcover class
	Suitable

	Post-flooding or irrigated croplands (or aquatic)
	No

	Rainfed croplands
	No

	Mosaic cropland (50-70%) / vegetation (grassland/shrubland/forest) (20-50%)
	No

	Mosaic vegetation (grassland/shrubland/forest) (50-70%) / cropland (20-50%) 
	No

	Closed to open (>15%) broadleaved evergreen or semi-deciduous forest (>5m)
	Yes

	Closed (>40%) broadleaved deciduous forest (>5m)
	Yes

	Open (15-40%) broadleaved deciduous forest/woodland (>5m)
	Yes

	Closed (>40%) needleleaved evergreen forest (>5m)
	No

	Open (15-40%) needleleaved deciduous or evergreen forest (>5m)
	No

	Closed to open (>15%) mixed broadleaved and needleleaved forest (>5m)
	Yes

	Mosaic forest or shrubland (50-70%) / grassland (20-50%)
	No

	Mosaic grassland (50-70%) / forest or shrubland (20-50%) 
	No

	Closed to open (>15%) (broadleaved or needleleaved, evergreen or deciduous) shrubland (<5m)
	Yes

	Closed to open (>15%) herbaceous vegetation (grassland, savannas or lichens/mosses)
	No

	Sparse (<15%) vegetation
	No

	Closed to open (>15%) broadleaved forest regularly flooded (semi-permanently or temporarily) - Fresh or brackish water
	Yes

	Closed (>40%) broadleaved forest or shrubland permanently flooded - Saline or brackish water
	Yes

	Closed to open (>15%) grassland or woody vegetation on regularly flooded or waterlogged soil - Fresh, brackish or saline water
	No

	Artificial surfaces and associated areas (Urban areas >50%)
	No

	Bare areas
	No

	Water bodies
	No

	Permanent snow and ice
	No

	No data (burnt areas, clouds,…)
	No



2.4.2 [bookmark: _Ref188171319][bookmark: _Toc193988206][bookmark: _Toc195759389]Not regularly flooded areas
Raw Data defining areas effected by flooding and predicted flooding depth at 2 year flood return rates and 100 year flood return rates were obtained from the Joint Research Centre (http://floods.jrc.ec.europa.eu). Data for 2035 and 2085 were available so data for 2055 were linear extrapolated. A Boolean mask was produced identifying those areas effected by floods at these return rates.  The data were then summarised to NUTS2 regions as proportion of NUTS2 area affected by floods with return rate of 2 years or 100 years.  
2.4.3 [bookmark: _Toc193988207][bookmark: _Toc195759390]The within 30 km weighted human population with access to bank voles habitat
IPCC4 WorldClim (http://www.worldclim.org), 1km monthly raster data were aggregated for 2000 and 2050 and were linear extrapolated to 2030. Mean values with standard deviation were calculated per NUTS 2 region. 
2.4.4 [bookmark: _Toc193988208][bookmark: _Toc195759391]Snow cover data
Following data were obtained from the Finnish Meteorology Institute and summarised to NUTS2 regions in terms of mean and standard deviation and linear extrapolated to 2030 and 2055: 
· Change in annual number of days with snow cover over land areas between baseline (1961-1990) and 2071-2100
· Projected changes for the period 2071–2100, relative to 1961–1990 in Annual number of frost days (FD) in European land areas.
· Projected changes for the period 2071-2100, relative to 1961-1990 in Average number of freezing point days (FPD) in European land areas for 3 periods:  September to November, December to February, and March-April. 
An alternative snow layer available is derived from the Snow cover product from the MOdis imagery, which is provided at 0.05 degree resolution, and gives snow cover data at approximately monthly intervals from March 2000 to October 2008. Full details are available at http://nsidc.org/data/docs/daac/modis_v5/myd10cm_modis_aqua_snow_monthly_global_0.05deg_cmg.gd.html. 
The aggregated dataset processed for this model provides the mean average fractional snow cover across years for each month.  This data was extracted to NUTS2.
2.5 [bookmark: _Toc193988209][bookmark: _Toc195759392]Vulnerability index for Cryptosporidium
2.5.1 [bookmark: _Toc193988210][bookmark: _Toc195759393]Proximity of livestock to human population
Livestock density data were obtained from FAO and summarised to NUTS2 regions in terms of mean and standard deviation. Human population data were available at NUTS2 from ESPON (www.espon.eu) for 2005 and 2055  and were linear extrapolated for 2030.
2.5.2 [bookmark: _Toc193988211][bookmark: _Toc195759394]Probability of flooding
See Section 2.4.2.
In addition Bioclim variable BIO13 ‘Precipitation of Wettest Month’ was obtained from WorldClim (www.worldclim.org) for 2000 and 2050 and linear extrapolated for 2030. Data were summarised to NUTS2 regions as Mean and Standard Deviation. 


3 [bookmark: _Toc183449063][bookmark: _Toc193988212][bookmark: _Toc195759395]Modelling of Climate Change and Health Vulnerability Indices
3.1 [bookmark: _Ref188172015][bookmark: _Ref188172049][bookmark: _Ref188172056][bookmark: _Toc193988213][bookmark: _Toc195759396]Baseline vulnerability index
3.1.1 [bookmark: _Toc193988214][bookmark: _Toc195759397]Background
The vulnerability of a population or a location is the summation of all risk and protective factors that ultimately determine whether a subpopulation or region experiences adverse health outcomes (Balbus and Malina 2009). The vulnerability of a location can be due to factors such as the baseline climate, the magnitude and frequency of extreme weather events, the status of infrastructure, and other factors. Population vulnerability can arise from the demographic structure of a population, prevalence of pre-existing medical conditions; acquired factors (such as immunity); and genetic factors (Balbus and Malina 2009). Population vulnerability also is a function of the status of the public health and health care infrastructure, such as the quality of surveillance and control programs, social capital, distribution of resources, treatment costs, ability to adapt, education levels and so on. Socioeconomic factors play a critical role (Confalonieri et al. 2009) in determining vulnerability, by interacting with biological factors that mediate risk (such as nutritional status) and/or lead to differences in the ability to adapt or respond to exposures or early phases of illness.
As stated in the report of phase 1 of the contract (Ebi et al. 2011), there have been surprisingly few attempts to develop vulnerability indices for the health risks of climate change. The report recommends including following variables in a baseline vulnerability index: 
1. Climate change: average temperature and average precipitation;
2. Susceptibility to vector-borne and zoonotic disease: % population < 5 or > 65 years of age;
3. Access to sufficient resources: % of population living below poverty line;
4. Public health education: literacy rate;
5. Public health infrastructure status: public health expenditure or life expectancy;
6. Health care status: health care expenditure
7. Urbanisation and migration
Climate change was considered in terms of monthly precipitation and temperature extremes, as that would give a better indication of climate change than average. Moreover changes in disease patterns will more likely be due to the extremes of the climate change. Susceptibility to vector-borne and zoonotic disease was not considerer for the baseline VI as it would be to generalised and other hand better specified when developing the different disease specific VI’s, as later described in this report. Access to sufficient resources could not be considered as such, as no data are available and a proxy is needed. In addition, in Europe access to sufficient resources is indifferent from personal socio-economic level. 
Reid et al. (2009) found education level (below/above high school diploma) to be a factor for vulnerability in heat waves, though this does not relate directly to infectious disease risk. A Spearman correlation table showed that there was a high (77%) correlation between education levels and poverty (77%) and race (56%) and diabetes (28%). Education level, race and poverty were given the same loading factors in their vulnerability index. We also investigated the association between life expectancy and education level and GDP per capita at NUTS2 level using regression analysis. Three MS showed positive correlation between education and life expectancy, whilst one showed a negative correlation, and the others no correlation at all. Regional GDP per capita seems to have no effect on life expectancy, reinforcing the assumption that a MS provides approximately equal levels of healthcare within its borders. 
Urbanisation and migration data were not considered for VI modelling as population projections are expected to include a lot of uncertainty (see e.g. lutz). 
3.1.2 [bookmark: _Toc195759398]Modelling temperature projections at NUTS2
Forecasts for various indices required the development of average monthly projected temperatures at NUTS2 level. The available data for the current temperature levels were available as minimum and maximum monthly temperatures for the period 1950-2000. However, forecast data available provided only the minimum and maximum daily temperatures for each month for the years 2035 and 2055.  It was therefore necessary to find a method to convert the forecast daily temperature extremes to monthly mean estimates in order to make a direct comparison.
The method chosen was based on normalising the average NUTS2 temperature projections to those described in IPCC (2007) (Figure 1)
[bookmark: _Ref195688253][bookmark: _Toc195759324]Figure 1 – Illustration of NUTS2 temperature projections as described in IPCC (2007)
[image: ]

[image: ]
The European Union sits in the middle of the range of projected temperature increases in the next century. The map on Figure 2 shows the multi-AOGCM average projection for the A1B SRES scenario. Temperatures are relative to the period 1980-1999. (IPCC 2007)
[bookmark: _Ref195688348][bookmark: _Toc195759325]Figure 2 - Projected surface temperature changes for the late 21st century (2090-2099). 
[image: ]
The average of the low, best and high estimates of temperature increase are 1.67°C, 2.8°C and 4.45°C respectively in 105 years. IPCC (2007), Figure SMP.5 shows forecasts of temperature increase to be approximately linear. Thus, by linear interpolation from 1990 forecasts for the projected years were normalised to have a mean as presented in Table 2.
	[bookmark: _Ref195689269][bookmark: _Toc195759357]Table 2 – Forecasted mean EU annual temperature increase

	Mean EU annual temperature forecast increase °C
	Low
	Base
	High

	2035
	0.72
	1.21
	1.93

	2055
	1.04
	1.75
	2.78


The average of the minimum and maximum monthly historic data at NUTS2 were taken as the estimate of the mean monthly current temperature. This gives an unweighted average over the whole year of 9.28°C. This value was added to the projected temperature increases (Table 3).
	[bookmark: _Ref195689458][bookmark: _Toc195759358]Table 3 – Forecasted mean EU annual temperature

	Mean EU annual temperature forecast °C
	Low
	Base
	High

	2035
	10.00
	10.49
	11.21

	2055
	10.32
	11.03
	12.06


The forecast minimum and maximum daily temperatures for each month at NUTS2 were averaged to give some estimate of the average monthly forecast temperature. When averaged over the entire year and all NUTS2 regions, these gave values of 10.45°C and 11.14°C for 2035 and 2055 respectively, which closely match the base estimates in the above table.
An increment was added to the projected forecasts to make them match the mean values in the above table. Thus, for example, in order to produce the base forecast for 2035 with mean 10.53°C an increment of 0.047°C was added.
3.1.3 [bookmark: _Toc193988215][bookmark: _Toc195759399]Development approach
Climate change, public health infrastructure and health care status data were considered when developing the baseline vulnerability index. The amount of projected changes in climate conditions at a Member State’s NUTS2 level was considered in terms of monthly precipitation and temperature. Some diseases will increase with precipitation, which can, for example, increase the rate of flooding and groundwater contamination. Other diseases may increase with less precipitation as water becomes scarcer and less potable water is consumed. Some diseases will increase with increased maximum temperature as, for example, it promotes bacterial growth, whilst other disease may increase with minimum temperature as vectors or hosts become more viable over the winter. As a general index, without any reference to a specific disease, and thus no reference to allowing a weighting of the relative importance of changes in monthly precipitation or temperature, we determined that the most pragmatic approach was to consider changes in the extremes of the climatic variables, as follows.  
Let MinP, MaxP, MinT, and MaxT be monthly precipitation and temperature extremes with subscripts for the applicable year. Let:  


Thus  and represent a measure of the sum changes in extremes in projected year t. Let  and  be the estimated changes variables averaged over all values at NUTS2 level within the EU27 in year t. Note that  and give equal weighting to changes in minimum and maximum extremes since there is no basis for weighting one over the other, and that by taking the absolute values (ABS) we assign equal importance to an increase or decrease of an extreme.
Variables for public health infrastructure were available at NUTS1 levels, in terms of public health expenditure as % GDP or % of total government spending. Also number of hospital beds per 100 000 inhabitants (at NUTS2 level) was considered but during the ten years between 1998 and 2008, the number of hospital beds per 100 000 inhabitants fell in every Member State, except Malta (where the main general hospital was reconstructed) whilst general health levels increased. The largest reductions in the availability of hospital beds were recorded in the three Baltic Member States and in Bulgaria. The reduction in hospital bed numbers may reflect, among others, economic constraints, increased efficiency through the use of technical resources (for example, imaging equipment), a general shift from inpatient to outpatient operations, and shorter periods spent in hospital following an operation (Eurostat). In other words, the number of hospital beds can be inversely correlated with the level of healthcare, and thus it is not possible from the available data to tease out the benefit of the availability of hospital capacity in terms of its healthcare value. Similarly, number of medical staff or physicians is a poor reflection of medical care since access to modern drugs, treatment techniques, surveillance systems and equipment all play a major role. 
Variables for health care status were also available at NUTS1 level in terms of public health expenditure as percentage of GDP, or at NUTS2 in terms of ‘life expectancy at birth’ and ‘under 5 years age mortality rate’. Infant mortality rates have reduced and life expectancies have increased across the EU27 between 1998 and 2008 (Eurostat). Life expectancy at birth is a forecast based on models and predictions of which the detail and assumptions are not know (see, for example, improvements for Eastern European countries). Improvements of the under 5 years age mortality rate is monitored but this is more expected to be due to medical, technical and infrastructure improvements than to change in disease incidence due to climate change.  
Public health expenditure as a percentage of GDP is a possible surrogate measure of the level of healthcare. However, this measure is highly dependent on the actual GDP of a MS and the percentage may become very high when GDP is low. A more realistic measure is the actual per capita public health expenditure but this is dependent on an MS’s purchasing power parity (PPP).In other words, a euro spent on healthcare in a wealthy MS will not buy as much healthcare as a euro spent in a relatively poor MS.  Therefore, it was decided to use the per capita annual healthcare expenditure (PCHE) normalised by dividing by PPP as the proxy for the availability of public health resources. 
In conclusion the simple vulnerability index sVI for a MS in year t was developed as follows:

Note that the index considers the extremes as a change relative to the average  or  that is projected, i.e:
 and 
The reason for using relative change is to highlight those regions that will experience a greater change in extremes than the average in Europe.
An alternative would have been to normalise against average current temperatures and precipitations across all MSs:
 and 
However, there would need to be a balance in the interpretation of the two terms above. Whereas precipitation has a meaningful absolute scale with zero representing no precipitation at all, temperature does not. The Celcius scale is arbitrary based on the temperatures at which water freezes and boils. The absolute Kelvin temperature scale is zero at -273.15°C. Thus, for example for 2035, a typical projected 0.7°C change in a temperature extreme on a current base of 8.4°C average temperature would give:

compared with a typical projected  0.07mm change in the extremes of precipitation over the average current monthly precipitation of about 6mm would give the ratio 0.07/6 = 0.01, thereby arbitrarily assigning five times more influence to precipitation extremes than temperature extremes.
PPP and PCHE were not projected because of the large amount of unpredictability the EU currently faces. Instead, these values were taken from 2010 data for PPP and 2007 data for PCHE (Eurostat), which included both public and private healthcare expenditure.
Thus the Simple Vulnerability Index provides a relative ranking of the changes in extremes that may be experienced by each MS and uses the PPP measure, normalised to reflect the financial capacity available to the Member State to cope with any health changes that would result. An implied assumption is that within a MS all members of the population have equal access to the same level of healthcare. Furthermore, this index does not take account of the number of people who reside in a particular NUTS2 region.
A logical extension of the sVI is to incorporate a weighting by the fraction of the Member State’s population that resides in that NUTS2 region: the larger the fraction, the more a Member State will find it difficult to deal with any health changes. This gives the Population Weighted Simple Index (PWSI):

where f is the fraction of the MSs population residing in the specific NUTS2 region.
3.1.4 [bookmark: _Toc193988216][bookmark: _Ref187996453][bookmark: _Toc195759400]Projected baseline vulnerability index
The ‘Simple Vulnerability Index’ and ‘Population Weighted Simple Index’ were projected for 2035 and 2055 and the geographical variability for both indices are presented in Figure 3 to Figure 6. The results show the superposition of patterns of greatest relative change in environmental conditions with the wealth available of each Member State to deal with health outcomes related to environmental effects and the concentration of populations. The Southern and Eastern European regions appear to be most affected.
The advantage of the ‘Simple Vulnerability Index’ is that it directly relates to the projected change in environmental conditions. A disadvantage is that it indicates relative differences between Member States rather than absolute changes. A second disadvantage is that the index cannot be used in combination with disease-specific indices.
3.1.5 [bookmark: _Toc195759401]Further development
All variables that have been recommended for inclusion in a baseline vulnerability index have been investigated, but only temperature, precipitation, PPP and per capita GDP could be used. We investigated at length the possibility of deriving an elasticity concept based on the relationship between the per capita GDP expenditure on healthcare to the life expectancy of the MS, a quite standard plot produced, by example, by WHO. The deviation from a cruve fitting the highest life expectancy achieved for a given per capita healthcare expenditure provided some analysis of the ‘fat’ in the system that could be diverted to cover emerging health risk issue. However, the analysis relies very heavily on life expectancy estimates, which are long-term projections vulnerable to significant error particularly for the newer MSs, which are expected to rise significantly. It also relied on the principle that each MS could act in an efficient manner which may not be realistic and somewhat contradicts the plotted data in the first place,
Without any specific diseases being identified, and recognising the limited amount of consistent pan-European current and projected climate-related variables available, w e don’ see any other candidate variables for a baseline vulnerability index to perform a more involved analysis that would not involve making very significant assumptions that would undermine the transparency and believability of the analysis.


[bookmark: _Ref194034805][bookmark: _Toc193990287][bookmark: _Toc195759326]Figure 3 – Simple Baseline Vulnerability Index project for 2035
[image: ]
[bookmark: _Toc193990288]
[bookmark: _Toc195759327]Figure 4 – Simple Baseline Vulnerability Index project for 2055
[image: ]
[bookmark: _Toc193990289]
[bookmark: _Toc195759328]Figure 5 - Population Fraction Weighted Baseline Vulnerability Index projected for 2035
[image: ]
[bookmark: _Ref187996463][bookmark: _Toc193990290]
[bookmark: _Toc195759329]Figure 6 - Population Fraction Weighted Baseline Vulnerability Index projected for 2055
[image: ]


3.2 [bookmark: _Ref188172080][bookmark: _Ref188172083][bookmark: _Toc193988217][bookmark: _Toc195759402]Vulnerability index for Salmonella
3.2.1 [bookmark: _Toc195759403]Background
Temperature is the key climatic factor that influences Salmonella prevalence and concentration since it (unlike e.g. Campylobacter) can grow outside the host animal and establish reservoirs on surfaces and in water bodies. Salmonella prevalence in farm animals often shows a seasonal fluctuation, but the prevalence found in animal food products remains rather constant over the year. This means that the main vulnerability concern for Salmonella is the influence of temperature on it’s growth in the environment. Most Salmonella-types grow in a 10° to 48° C temperature range
Kovats et al. (2004) found a clear relationship between temperature and reported salmonellosis incidence rates in 10 Member States: Poland, Scotland, Denmark, England & Wales, Estonia, The Netherlands, Czech Republic, Switzerland, Slovak Republic, and Spain. They propose a MS-specific temperature threshold above which Salmonella will grow with a MS-specific percentage per unit temperature raise. For different reasons this MS-specific variability can be questioned and we propose a more pragmatic approach.
[bookmark: _Ref187914826][bookmark: _Toc193990291][bookmark: _Toc195759330]Figure 7 - Relationship between temperature and salmonellosis incidence rates
[image: ]
Looking at Figure 7: if A = lowest annual temperature, B = lowest annual incidence rate, C = highest annual temperature, D = peak annual incidence rate, then the percentage increase of salmonellosis incidence per °C is given by:

Using this formula the percentage increase of salmonellosis incidence per °C was estimated based on the Kovats et al. (2004) data, using either a variable minimal temperature or a fixed minimal temperature of 6° C, which was proposed by Kovats et al. (2004) as common overall threshold. The results are presented in Figure 8. Using a fixed minimal temperature threshold of 6°C (green bars), all countries now have roughly the same factor (mean 20% per °C), except Spain which stands alone as a hot country and has a factor of 10% per °C. Extrapolating from the countries presented in Kovats et al. (2004), we used a minimum threshold temperature of 6°C for all MSs, and a percentage increase of salmonellosis incidence of 20% per °C for all MSs except the Southern states of Spain, Portugal, Italy and Greece where the 10% per °C value for Spain is used. 
[bookmark: _Ref187915378][bookmark: _Toc193990292]

[bookmark: _Ref195695838][bookmark: _Toc195759331]Figure 8 - Percentage increase in salmonellosis per °C
[image: ]
If λ0 is the current annual lowest incidence rate for salmonellosis in a population, then the monthly projected incidence rate λm adjusted for that months average ambient temperature Tm is then:
, for Spain, Portugal, Italy and Greece;
 for other Member States.
Summing to get the incidence rate for the year  we have:

where the averaging occurs over all months of the year. 
Projected incidence rates for a future year t can then be estimated as:

[bookmark: _Ref187987042]Trevejo et al. (2003) estimate Salmonellosis related morbidity, mortality and hospitalisation costs in California (1990-1999), which provides us the ability to estimate the relative vulnerability of age groups and estimate the DALY effect (Table 4). The flow diagram presented in Figure 9 illustrates the logic for determining a DALY estimate for each case, which will differ depending on the age group. Using the Trevejo et al. (2003) data with the probabilities a, b, and c, the impacts in DALY (W, X, Y, Z) can be estimated by renormalising the mean infection and hospitalisation durations to EU relative frequencies by age groups, and by assuming that those whose infection is not reported have durations equal to the infection only reported cases (Table 5). Results give 7.19 days (0.0197 years) and 7.592 days (0.208 years) for infection only and hospitalisation respectively.
[bookmark: _Ref188515295]

	[bookmark: _Ref195696235][bookmark: _Ref195696228][bookmark: _Toc195759359]Table 4 - Characteristics of Salmonella patients in California: reported cases, hospitalizations, and deaths (Trevejo et al. 2003)

	
	Reported cases in 1993–1999*
	Hospitalizations in 1990–1999†
	Underlying cause of death in 1990–1999
	Multiple cause of death in 1990–1997

	
	Frequency
	Rate¶,#
	95% CI**
	Frequency
	Rate¶,#
	95% CI
	(frequency)‡
	(frequency)§

	Sex
	
	
	
	
	
	
	
	

		Male
	17,012
	17.4
	16.8, 18.0
	5,705
	3.6
	3.3, 3.8
	39
	81

		Female
	17,908
	18.4
	17.7, 19.0
	5,397
	3.4
	3.1, 3.7
	35
	49

		Unknown
	5,228
	
	
	0
	
	
	0
	0

	
	
	
	
	
	
	
	
	

	Age group (years)
	
	
	
	
	
	
	
	

		<1
	4,147
	120.8
	120.0, 140.0
	1,380
	25.0
	20.7, 29.3
	2
	2

		1–4
	5,908
	40.4
	39.5, 44.7
	1,015
	4.3
	3.5, 5.2
	0
	1 5–17

		5–17
	5,794
	15.6
	15.1, 17.1
	1,262
	2.1
	1.7, 2.5
	3
	3

		18–39
	10,009
	14.2
	14.1, 15.6
	2,568
	2.3
	2.0, 2.6
	11
	21

		40–64
	6,507
	12.4
	12.1, 13.6
	2,315
	2.7
	2.4, 3.1
	14
	32

		65–79
	2,347
	14.4
	13.7, 16.7
	1,672
	6.4
	5.4, 7.4
	21
	35

		80
	917
	18.3
	15.8, 21.7
	890
	11.0
	8.7, 13.3
	23
	36

		Unknown
	4,519
	
	
	0
	
	
	0
	0

	
	
	
	
	
	
	
	
	

	Race/ethnicity
	
	
	
	
	
	
	
	

		Asian/Pacific Islander
	2,799
	17.5
	16.1, 18.9
	1,150
	3.5
	2.9, 4.2
	10
	21

		Black
	2,103
	19.5
	17.7, 21.3
	1,165
	5.3
	4.4, 6.3
	8
	15

		Hispanic
	9,861
	22.6
	21.6, 23.6
	3,353
	3.8
	3.4, 4.2
	11
	18

		Native American
	40
	4.3
	1.4, 7.3
	51
	2.7
	0.4, 5.0
	0
	0

		White non-Hispanic
	12,681
	15.4
	14.8, 16.0
	5,111
	3.0
	2.8, 3.3
	45
	76

		Other
	340
	
	
	198
	
	
	0
	0

		Unknown
	12,324
	
	
	74
	
	
	0
	0

	
	
	
	
	
	
	
	
	

	Overall
	40,148
	17.9
	
	11,102
	3.5
	
	74
	130

	* Source: California Department of Health Services. Automated vital statistics system (M. Starr, unpublished data) (demographic data not available prior to 1993).
† Source: California Office of Statewide Health Planning and Development. Patient discharge data file documentation: public version A (17).
‡ Source: California Department of Health Services. California’s death public use tape documentation (18) (contains the underlying cause of death only).
§ Sources: California Department of Health Services. California’s death public use tape documentation (18); National Center for Health Statistics. Multiple cause of death for ICD-9 data (19) (contains both the underlying and multiple causes of death).
¶ Rate: cases per 100,000 person-years.
# Case rates for demographic groups adjusted for the number with missing data. ** CI, confidence interval.


[bookmark: _Ref187987374][bookmark: _Ref187988823][bookmark: _Ref188515741][bookmark: _Toc193990293]
[bookmark: _Ref320792415][bookmark: _Ref320792401][bookmark: _Toc195759332]Figure 9 - Flow diagram illustrating the logic for determining a DALY estimate for each case
[image: ]
[bookmark: _Ref187988737]
	[bookmark: _Ref195696357][bookmark: _Toc195759360]Table 5 – Estimation probabilities (a, b, c) and impacts in DALY (W, X, Y, Z) per age group as illustrated in Figure 9
Figure 9

	Age group
	a
	b
	c
	W
	X
	Y3
	Z

	<1
	1
	20.70%
	0.045%
	0.0197
	0.0197
	0.0208
	L<1 - 0.5

	1-4
	=1/urf1
	10.64%
	0.005%
	0.0197
	0.0197
	0.0208
	L1-4 – 2.5

	5-17
	=1/urf1
	13.46%
	0.048%
	0.0197
	0.0197
	0.0208
	L5-17 – 11

	18-39
	=1/urf1
	16.20%
	0.136%
	0.0197
	0.0197
	0.0208
	L18-39 – 28.5

	40-64
	=1/urf1
	21.77%
	0.282%
	0.0197
	0.0197
	0.0208
	L40-64 – 52

	65-79
	=1/urf1
	44.44%
	1.023%
	0.0197
	0.0197
	0.0208
	L65-79 – 72

	80+
	1
	60.11%
	2.769%
	0.0197
	0.0197
	0.0208
	L80 – 80

	1 urf is the current under-reporting factor for each Member State, and Lx is the projected life expectancy of individuals in each region within the age group x. It is assumed that babies will receive medical treatment, and people 80+ because they will usually be in retirement homes. 
3 Y derived from Haagsma et al. (2008).


The DALY effect per infection for age group x is then:
		
The total DALY burden is:
		,
where  is the projected frequency with which the disease will occur in age group x in that MS.
Converted to a per capita rate, the total DALY burden can be considered as a reduction in life expectancy and, together with the cost of treatment, the above willingness to pay method can be used for determining whether the Member State would be able to manage the extra disease burden and with what residual life expectancy loss.
Good data on age related frequencies in the MSs are currently not available, so assuming the same relative expected rates of illness by age group as in Table 4 for the US for reported cases, and ignoring the small inconsistency with assuming a reporting rate for babies and infants, we can use where O is the current observed incidence rate, px is the probability that a case will be for age group x, given by renormalizing the data from Table 4 using:

where  is the projected population size for the age group for the region,  is the population size for the population under study in Table 4 (Table 6) and  is the incidence from group x in the study of Table 4.
	[bookmark: _Ref188516034][bookmark: _Toc183449077][bookmark: _Toc195759361]Table 6 - The population size for the population under study in Table 4 

	Age group (years)
	

	<1
	3,432,947

	1–4
	14,623,762

	5–17
	37,141,026

	18–39
	70,485,915

	40–64
	52,475,806

	65–79
	16,298,611

	≥80
	5,010,929


The report of Phase 1 of the VI-MAP contract recommends following variables suitable for mapping vulnerability to salmonellosis:
· Temperature
· Age (particularly infants less than 5 years of age and adults 65 years of age and older),
· Indicator(s) of the effectiveness of food safety regulation.
· Basically same regulation implemented in whole EU, if not: illegal. 
The first two variables are considered here above but indicators on effectiveness of food safety regulations are difficult to identify. One of the major factors contributing to the reduction of foodborne salmonellosis is proper food handling by consumers, which is not controlled by food safety regulations. For the remaining steps in the food chain, food safety is, in theory, equally regulated for all MSs by EU directives (e.g. 94/65/EC and 92/64/EC), where all MSs are obliged to meet the same standard. Difference in effectiveness of food safety regulations between MSs is therefore not linked to any economical value. Moreover, the effectiveness is only expected to increase and will therefore reduce the risk for salmonellosis in the future. There is also considerable uncertainty about the original source of Salmonella causing infection, exacerbated by the high levels of essentially uncontrolled a documented trade and re-trade of food products within the EU. It is therefore not likely to be of value to consider environmental factors that change the prevalence and load at the farm. Instead, assuming that the trade and prevalence remain constant, we can consider the effects of temperature variations on incidence rates.
3.2.2 [bookmark: _Toc193988220][bookmark: _Toc195759404]Projection of the vulnerability indices for Salmonella
We have developed the following vulnerability indices for Salmonella. Graphical results for these indices can be found in Figure 10 to Figure 16.
[bookmark: _Ref188172356]Fractional increase in incidence rate in year t  in a region (Figure 10, Figure 11)
-1
[bookmark: _Ref188172403]where z = 0.1 for Spain, Portugal, Italy and Greece, = 0.2 for other MSs.
Per capita change in DALY burden, accounting for changes in the projected age distribution (Figure 12, Figure 13): 

[bookmark: _Ref188172434]Fractional increase in healthcare cost (Figure 14, Figure 15):

where:

[bookmark: _Ref188172460]	And where is the current cost of treatment of infection for an individual in age group x.
Per capita increase cost of healthcare burden as a fraction of healthcare expenditure (Figure 16, Figure 17):

3.2.3 [bookmark: _Toc193988221][bookmark: _Toc195759405]Further development
All the information that was used for developing the Salmonella VI has been extracted from a number of relevant publications. A major improvement would be using actual EU-wide Salmonellosis incidence as reported in the ECDC Tessy system. The data could then be combined with historical temperature data to obtain a more accurate relationship between human salmonellosis and temperature. However, Kris Ebi has noted that for the Kovats et al paper it was very difficult to obtain these historical data, and she was even unable to acquire permission to use the original data used in that paper, despite being one of its authors.

[bookmark: _Ref187992657][bookmark: _Ref195697822][bookmark: _Toc193990294]

[bookmark: _Toc195759333]Figure 10 - Fractional increase in incidence rate above current levels 2035
[image: ]

[bookmark: _Ref195757628][bookmark: _Toc195759334]Figure 11 - Fractional increase in incidence rate above current levels 2055
[image: ]
[bookmark: _Ref187992801][bookmark: _Ref321149832][bookmark: _Toc193990295]

[bookmark: _Ref195758144][bookmark: _Toc195759335]Figure 12 - Per capita change in DALY burden, accounting for changes in the projected age distribution 2035
[image: ]
[bookmark: _Ref187992764][bookmark: _Toc193990296][bookmark: _Ref195758149]
[bookmark: _Toc195759336]Figure 13 - Per capita change in DALY burden, accounting for changes in the projected age distribution 2055
[image: ]
[bookmark: _Ref195758163][bookmark: _Toc195759337]Figure 14 - Fractional increase in healthcare cost 2035
[image: ]
[bookmark: _Ref195758165]
[bookmark: _Toc195759338]Figure 15 - Fractional increase in healthcare cost 2055
[image: ]
[bookmark: _Ref187992683][bookmark: _Toc193990297]

[bookmark: _Ref195758197][bookmark: _Toc195759339]Figure 16 - Per capita increase cost of healthcare burden as a fraction of healthcare expenditure 2035
[image: ]
[bookmark: _Ref195758201]
[bookmark: _Toc195759340]Figure 17 - Per capita increase cost of healthcare burden as a fraction of healthcare expenditure 2055
[image: ]
3.3 [bookmark: _Ref188172108][bookmark: _Ref188172111][bookmark: _Toc193988222][bookmark: _Toc195759406]Vulnerability index for Lyme borreliosis
3.3.1 [bookmark: _Toc193988223][bookmark: _Toc195759407]Background
Rizzoli et al. (2011) provide a good summary on Lyme borreliosis epidemiology in Europe. Lyme borreliosis occurs between approximately 35 and 60°N in Europe and is uncommon at elevations above 1,000 m. Few countries have made Lyme borreliosis a compulsorily notifiable disease, therefore it is possible to make only approximate estimates of Lyme borreliosis incidence in Europe. In most countries reporting is mainly conducted through diagnostic laboratories reporting on the available details of patients with positive tests. There are several drawbacks involved in using such systems for the estimation of European Lyme borreliosis incidence, including under-reporting of erythema migrans, varying patterns of test referrals, varying sero-diagnostic criteria and sero-positivity linked to past exposure. Within these limitations it is possible to gain useful information from individual countries’ systems through year-to year comparisons of within-country data (Lindgren and Jaenson 2006).
During the last decades ticks have spread into higher latitudes (observed in Sweden) and altitudes (observed in the Czech Republic) in Europe and have become more abundant in many places (Talleklint and Jaenson 1998; Daniel et al. 2003). These tick distribution and density changes are to be related to changes in climate. The incidences of Lyme borreliosis and other tick-borne diseases have also increased in Europe during the same time period. In some places this may be an effect of better reporting over time. However, studies from localized areas that have reliable long-term surveillance data show that such incidence increases are real, and that they are related to the same climatic factors that have been shown to be linked to changes in tick abundance (Lindgren and Gustafson 2001; Daniel et al. 2004). In Europe, most cases occur during May to August when there is a peak in nymph tick activity and human outdoor activity (Hubalek 2009). However, the seasonal peak is very Member State specific, which reflects to some extent the behaviour of people visiting the countryside, and the varying incubation periods for particular clinical forms in different Member States. Is seems necessary to evaluate Lyme borreliosis by groups of Member States. 
Sero-prevalence and disease incidence rates are increased in certain occupational groups, e.g. forestry workers, some recreational groups such as orienteers and tourists to high-endemic areas. However, identification of high-risk groups is not always straightforward and confounding factors are evidently present.
The phase 1 report of the contract (Ebi et al. 2011) recommends following variables suitable for mapping vulnerability to Lyme borreliosis: 
1. Land use (particularly forested areas);
2. Temperature; 
3. Vegetation period; 
4. Indicator(s) of socioeconomic factors that increase exposure (e.g. increased leisure time for outdoor activities, and decreased socioeconomic status leading to subsistence foraging in forests).
Jaenson and Lindgren (2011) obtained from several sources distribution maps of vegetation types that are associated with high tick densities: hazel, oak, black alder, and the area denoted as the boreonemoral and nemoral zones combined. Beech was only present in a minor part of a ‘high-tick-density area’, which they used as study area.
The effects of temperature (and climate) on vector ticks are quite complicated and simple solutions of the interrelationships are usually not the best ones (Hubalek 2009). Estrada-Pena et al. (2004) found positive influences of a milder winter period (weeks 8–14) on the abundance of nymphs the following year and suggest the number of days with temperatures above 6° C in the weeks 8–14 as a correlated criterion. They also found that a summer temperature of 21° C was optimal for tick development whereas summer temperature above 22° C would again decrease abundance. Especially Scandinavia appears to be vulnerable for increasing tick abundance due to climate change. Gray et al. (2009) state that in central Sweden increases in tick abundance are correlated to a combination of mild winters (fewer days with temperatures below 7◦C) and extended spring and autumn seasons (more days with minimum temperatures not lower than 5 to 8◦C) in areas with high humidity and good vegetation cover to avoid desiccation of the tick. They warn that there was little consistency in the effect of climate variables on tick abundance, which seems to be connected with the different climate niche experienced by the tick population in their area, so that precipitation and temperature have variable regulatory influences.
Rizzoli et al (2011) states that climate change’s effect on land use and socio-economic influences are more likely than climate conditions per se to be the driving factors in the incidence of Lyme borreliosis in temperate Europe.
Jaenson and Lindgren (2011) defined the vegetation period as the number of days per year with mean temperatures ≥5◦C starting on the 5th day in a continuous period with temperatures above the threshold temperature and ending on the 4th day in the last continuous 4-day period. A recent analysis found that the geographical distribution of Ixodes ricinus in Sweden is associated with a green vegetation period averaging about 170 days, an early spring (before May 1st), and the distribution of black alder.
To our knowledge, the impact of socioeconomic factors that increase exposure on Lyme disease incidence has not yet been analyses. This means that parameters for quantifying this impact are not available for vulnerability mapping.
3.3.2 [bookmark: _Toc193988224][bookmark: _Toc195759408]Development approach
The V-borne project (ECDC) developed a multi-criteria decision model to map Ixodes ricinus distributions in Europe, using quantifiable climate parameters (Hendrickx et al. 2008). It used following suitability criteria:
· Temperature in weeks 8 – 14 to start activity (5-7 °C) (Estrada-Pena et al. 2004) 
· Temperature in autumn to stop activity (5-7 °C) (Rizzoli et al. 2011)
· Optimal summer temperature (15-20-22-27 °C) (Estrada-Pena et al. 2004)
· Decreasing abundance with decreasing relative humidity (90-100 %) (Hubalek et al. 2003)
· Decreasing abundance with increasing altitude (0-1200 m) (Jouda et al. 2004)
· Decreasing abundance when temperature is persistently high, i.e. months with mean above 22 °C (1-6) (Estrada-Pena et al. 2004)
The variables were standardised into intervals between [0,255] prior to modelling and upper and lower limits of the criteria were included in sigmoidal membership functions. Each individual membership function transformed the original data layer on a per pixel basis into a suitability map scaled between [0,255]. The individual suitability data layers were combined using a linear combination method. Each factor was assigned equal weight and added using the following equation:

where ai = weight and xi = factor.
In addition to the V-borne model, presences of hazel, oak, and black alder was approximated by broadleaf-forested area, extrapolated from globcover data as described in Section 2.3.2. 
In order to include Indicator(s) of socioeconomic factors that increase exposure, a linear weighting to approximate how many people would visit the rural area that was viable for the tick, assuming a max distance of 30km to go for a walk in the woods with a linear function relating relative frequency to distance from home.
		
The within 30 km weighted human access to rural area for a certain point of reference was extrapolated as described in Section 2.3.4.
Finally, the estimated weighted human access to rural area was multiplied with the presence of broadleaf-forest and multiplied with the combined climate suitability for Ixodes to obtain the human vulnerability to get in contact with possible infected I. ricinus. Figure 18 illustrates the logic fort the Lyme borreliosis VI.
[bookmark: _Ref192870430][bookmark: _Toc193990298][bookmark: _Toc195759341]Figure 18 – Flow diagram illustrating the logic for the Lyme borreliosis VI
[image: ]
[bookmark: _Toc193990300][bookmark: _Toc195759342]Figure 20 – Lyme borreliosis VI - 2030
[image: ]
3.3.3 [bookmark: _Toc193988225][bookmark: _Toc195759409]Further development
The results of the V-Borne model are imprecise for Scandinavia. Moreover, not all variables that are used in the model can be projected to 2055. The V-Bornet project is currently collecting I. ricinus presence data, which will be modelled into vector distribution maps. These results will be available before June 2012 and can be used for an improved VI development. Also the categorisation of the land cover data to be a proxy for oak, beech and black alder coverage will be revised. Danielova (2010) has shown that ticks are most populous at boundaries where spruce forest meets dense undergrowth where there are paths, which provide the ticks with hosts. We are looking at the possibility of getting this information at pixel level to provide a better geographical mask.
In addition, the data that were used for the analysis in Estrada-Pena et al. (2011) would be useful for an alternative VI development. The data are currently not available to us but were requested to ECDC.
[bookmark: _Ref188172138][bookmark: _Ref188172141][bookmark: _Toc193988226][bookmark: _Toc195759410]

3.4 Vulnerability index for hanta virus
3.4.1 [bookmark: _Toc193988227][bookmark: _Toc195759411]Background
Olsson et al. (2010) provide a good summary on hantaviruses and their hosts in Europe. Four (Dobrava, Saaremaa, Seoul, and Puumala [PUUV] viruses) are clearly associated with hemorrhagic fever with renal syndrome (HFRS). PUUV, the most common etiological agent of HFRS in Europe, is carried by the bank vole (Myodes glareolus), one of the most widespread and abundant mammal species in Europe. Figure 22 illustrates the geographical distribution of hanta viruses and their reservoir hosts in Europe and shows that the area with presence of bank vole covers all areas with any type of Hanta virus, though HUUV prevalence appears to be constrained to some regions with no explanation for why this is so. Linard (2007) suggests that there could be some relationship to soil particle thinness (the smallness of particles), but this was a very localized study and the thinness was also correlated to latitude, so this could be a confounding factor. They also found that regression models were not very useful at a local level for abundance of voles. A major constraint to modelling Hantavirus is that no consistent data exist covering the EU27 on the number of voles. One can assume that vole numbers are fairly proportional to the Hantavirus risk on the population, but the only fairly consistent available data for the EU27 simply provide information on the absence or presence of a vole population.
[bookmark: _Ref193968712][bookmark: _Toc193990302][bookmark: _Toc195759343]Figure 22 - Geographical distribution of hantaviruses found in Europe and distributions of their reservoir hosts (Olsson et al. 2010)
[image: ]

Clement et al. (2009) related the population density of bank voles to the incidence of Nephropathia Epidemica (NE) in Belgium. Advantage is that Belgium has a long tracking history of NE. Each NE peak is preceded by a ‘mast year’ (i.e. a year in which the forest production of mast (seeds of broad-leaf trees, mainly native oaks and common beech) that rodents feed on is particularly high, sufficient for there to be leftovers to the next year, i.e. a measure of food availability. An alternation of mast/non-mast years exists since 1998, which is explained by the fact that a broad-leaf tree is physiologically unable to produce maximal mast in two consecutive years, even under optimal weather conditions. Nevertheless, occurrence of three confirmed mast years within a mere five year period (2000–2004) has never been observed before in Belgium, at least not for beech. Moreover, this record has been confirmed in several neighbouring countries, such as Germany. The analysis of Clement et al. (2009) only considered a rank correlation relationship between the cases of any hanta virus and temperature and precipitation between April and July in preceeding years, not regression parameters, which makes it difficult to translate climate change effects directly to human illness rates.  Bennett (2009) provides regression parameters for climatic variables on the occurrence of masting events but only for the UK. Barrios (2010) determined that one should not look solely at masting, as other vegetation effects also effect vole population.
Olsson et al. (2010) state a strong positive correlation between bank vole numbers and the risk of humans acquiring PUUV-HFRS (nephropathia epidemica). In Finland and northern Scandinavia, bank vole populations show multiannual cyclic patterns of 3–4 years with increase, peak, and decline/low phase. In Sweden, for example, bank vole abundance alone explained >70% of the variation in seasonal HFRS incidence, and in Finland the current increase or peak phase of the bank vole cycle was a good predictor of risk. During rapid population growth, either in cyclic increase phase or due to masting, one should expect a simultaneous build-up of recently hantavirus infected and -shedding rodents that cause a rapid frequency dependent transmission of hantavirus across the rodent population, and subsequently increased risk to humans. 
Forecast data on cyclical effects of weather patterns are currently not available so it is not possible to account for the multi-years cycle of masting events. However, data on current broadleaf coverage closed to open (>15%), and closed to open (>15%) and regularly flooded, etc. are available and current data and projections of length of growing periods for 2035 and 2055.
The report of phase 1 (Ebi et al. 2011) states that all literature references speak in qualitative terms on rodent reservoir abundance and possible climate change effects. No quantitative approaches have been found. Variables suitable for mapping vulnerability to rodent borne diseases with emphasis on Puumala Virus include:
· Forest and tree species distributions
· Urbanisation and habitat fragmentation
· Autumn and summer temperatures
· Snow cover. 
· The role of precipitation is currently unclear. 
3.4.2 [bookmark: _Toc193988228][bookmark: _Toc195759412]Development approach
For temperate Member State an analysis was performed at NUTS2 level of the current reported presence of bank voles (proportion of NUTS2 area where bank vole is present) against mean monthly minimum, maximum, and average temperatures and mean monthly precipitation data to determine if there were any limits outside of which bank voles do not live (i.e. where the presence is zero).
The clearest threshold relationships were for minimum average precipitation, and minimum and maximum monthly average temperatures are shown in the following plots:
[image: ]
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[image: ]
The three conditions that give absence of bank voles shown above are:
Condition 1	Min [Mean Monthly Precipitation] < 16 (mm*10)
Condition 2	Min [Max Monthly Temperature]> 110 (°C *10)
Condition 3	Min [Min Monthly Temperature] > 51 (°C *10)
The following counts were observed for NUTS regions in temperate Member States:
	Condition
	Count

	1 only
	7

	2 only
	0

	3 only
	0

	1 and 2
	6

	2 and 3
	0

	1 and 3
	0

	1,2 and 3
	11

	None
	232


Thus, Conditions 2 and 3 do not occur separately from Condition 1. Condition 1 is therefore the only constraint that needs to be incorporated, i.e. that the precipitation level must exceed 1.6 mm in all months of the year for bank voles to be viable.
An estimate of the 20-year average temperature change () by NUTS2 was made using 2035 and 2055 projections. These gave values for each region with a mean and standard deviation of 0.69 and 0.14 celcius respectively.
Data from Clement et al. (2009) showed that observed incidence rates of NE have increased from 33.6 in 1985-1995 to 139.8 in 1996-2007 along with a corresponding change in average temperature in Belgium from 10.7°C to 11.4°C. Clement argues that this is due to increased masting driven by the temperature increase. This equates to approximately a 4.5-fold increase in NE rates per degree Celcius increase in temperature. The information is the best we have on NE rates in the EU-27 and the gradient R = 4.5/°C is applied for the other Member States, acknowledging that this is a tentative assumption. 
The analysis assumes that the (generally unknown) NE rates will be proportional to the number of people visiting a forest with a suitable broadleaf mix (temperate) and the amount of broadleaf area available to the population – conditional on the forest not being in a flooded area. Thus, the exposure index for the current year is modelled as: 
		
where: 
BA = the surface of the NUTS2 area covered by broadleaf. This parameter is not varied with time.
pF = the proportion (current and projected) of the NUTS2 area affected by floods classified with a 2 year return rate
PopV = the population (current and projected) estimated to visit bank voles habitat per NUTS2
For subsequent years, the exposure index is modelled as:
		
		
[bookmark: _Toc193990303][bookmark: _Toc195759344]Figure 23 – Flow diagram for development of hanta virus vulnerability index in temperate regions
[image: ]
Whether applying the method with current values corresponds to currently known high-risk areas should be investigated. These may well not be a high level of correspondence, but neither do we know well what the current risks are across the EU27. However, by comparing current with future predictions it would identify where new potential hotspots could appear.
For more northern Member States a different approach is required. The main driver here is not the food source but the ability of rodents to survive the winter, which involves whether snow cover melts and thaws (increased temperature) both freezing the animals and reducing their ability to hide from predators, together with proximity to human populations. BBC News (2011) describes how this has occurred last winter in Scotland, for example. Since the approach is different from temperate MSs with no consistency in scale, it seems logical to perform two separate analyses and plots.
3.4.3 [bookmark: _Toc193988229][bookmark: _Toc195759413]Further development
A VI for hanta virus is currently only available for temperate climate MSs as the presence of bank vole at the edge of the large area where bank vole are present can be modelled by critical precipitation and temperature conditions. In temperate climate MSs bank vole are present almost everywhere, which means that the data lack variability necessary for accurate modelling. Spatial models that can predict the probability for bank vole presence at NUTS3 or even pixel level could help increasing the variability and consequently the accuracy of the VI (see V-BorNet model for Ixodes ricinus).
In Nordic MSs, presence of bank vole depends on cyclic patterns in snow cover, which are difficult to model with projected data. 
[bookmark: _Toc193990304][bookmark: _Toc195759345]Figure 24 – Current Hanta virus vulnerability index for temperate Member states
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[bookmark: _Toc193990305][bookmark: _Toc195759346]

Figure 25 - 2035 Hanta virus vulnerability index for temperate Member states
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[bookmark: _Toc193990306][bookmark: _Toc195759347]Figure 26 - 2055 Hanta virus vulnerability index for temperate Member states
[image: ]

3.5 [bookmark: _Ref188172167][bookmark: _Ref188172174][bookmark: _Ref188172268][bookmark: _Toc193988230][bookmark: _Toc195759414]Vulnerability index for Cryptosporidium
3.5.1 [bookmark: _Toc193988231][bookmark: _Toc195759415]Background
The incidence of cryptosporidiosis is determined by the incidence of infection in animal and human populations, excretion of oocysts into watersheds, and climatic factors  (Rose et al. 2002).  Temperature and precipitation affect the transmission and survival of the pathogen.  Genotype surveys indicate that domestic livestock, predominantly cattle, are the major reservoir for C. parvum infections in humans, with infected cattle a major transmission pathway along with indirect transmission through drinking water (Xiao and Feng 2008). There is a positive association between cases of disease and rainfall, particularly heavy rainfall events, peak of rainfall events, and oocyst concentrations in surface water. The concentration of oocysts in river water significantly increases during rainfall events (Rose et al. 2002). Rainfall affects parasite concentration by increasing surface runoff and re-suspension of river-bottom and storm drain sediment; the oocysts then infiltrate drinking water reservoirs.
Britton et al. (2010) analysed the associations between weather patterns and cryptosporidiosis in New Zealand and reported a positive association with rainfall and a negative association with temperature.  The effect of rainfall was modified by the quality of the domestic water supply.  Living in rural areas was strongly associated with the distribution of cryptosporidiosis. Seasonality of cryptosporidiosis in England and Wales has changed, with the spring peak decreasing and the autumn peak increasing, probably from improved drinking water regulations and investment in drinking water filtration of previously unfiltered water (Smith et al. 2006).
Temperature is a critical determinant of the viability of oocysts in the environment. Cryptosporidium oocysts maintain high levels of infectivity for at least 24 weeks at temperatures between 1°C and 15°C (King and Monis 2007) (King and Monis 2007).  The persistence of oocysts in water is not affected by temperatures <30°C (Nasser et al. 2003); at temperatures above 37°C, oocysts begin to be inactivated.
The report of the first phase of the contract (Ebi et al. 2011) recommends  following variables to be considered for inclusion in a VI  model for cryptosporidium.
· Precipitation (particularly heavy precipitation events), temperature; 
· Proximity of livestock to water sources (as indicated by land use); 
· Indicator(s) of the effectiveness of water safety regulation.
For the later variable no data are currently available. 
3.5.2 [bookmark: _Toc195759416]Development approach
The key vulnerability issue for Cryptosporidium is the contamination of drinking water with animal faeces. Watershed including large urbanised areas and intensive agriculture are of high risk for contamination. Heavy rainfall events are risk events, since they promote rapid transport of contaminations through the soil. Many studies have indicated that Cryptosporidium concentrations may peak during storm events or snowmelt, and that peak concentrations in source waters may be 10 – 100-fold higher than the concentration in non-event situations (WHO 2009).
Thus, the following geographical areas are most vulnerable:
· Rural towns with projected higher (or lower) peak rainfall than at present;
· Rural towns at base of mountains where the snow level is expected to be lower or higher;
Joiko et al. (2007) estimate that 20-28% of current EU population live in a rural setting. By analysing NUTS2 population density, assuming that the least dense regions represent the rural regions, and totalling the populations from least to most dense regions to achieve the above percentages, we arrive at a density of between 83,163 and 99,8385 people per square km as identifying the regions to be designated as rural (Figure 27Figure 27).
[bookmark: _Toc193990307][bookmark: _Ref188439179][bookmark: _Toc195759348]Figure 27 – Identification of NUTS2 regions as ‘rural’ based on population density
[image: ]
A rural-based vulnerability index was determined for each MS as follows:

where:
Rural = the indicator for whether the NUTS2 region is ‘rural’ (1) or not (0) (current and projected)
Cattle = the cattle population in the region (Current)
Prec = the precipitation (mm) in the wettest month (current and projected)
pFlood = the proportion of the NUTS2 region that is regularly flooded
[bookmark: _Toc193990308][bookmark: _Toc195759349]Figure 28 – Flow diagram for development of Cryptosporidiosis vulnerability index.
[image: ]
A second, density-based vulnerability index was determined for each MS as follows:
		
Where:
Pdens = the population density. The reciprocal replaces the rural indicator (current only), which allows one to consider the risk to regions that would not have fallen within the ‘rural’ definition.
Cattle = the cattle population in the region (Current)
Prec = the precipitation (mm) in the wettest month (current and projected)
pFlood = the proportion of the NUTS2 region that is regularly flooded
3.5.3 [bookmark: _Toc195759417]Further development
Vulnerability to cryptosporidiosis is clearly associated with presence of cattle in rural areas, flooding, and capacity of filtering drinking water. All these events occur and are differentiated at a much smaller scale than NUTS2. Summarising them to NUTS 2 level again eliminates the necessary spatial variability. Therefore it would worthwhile to repeat the modelling at NUTS3 or even pixel level. 
Water treatment data can still be included in the model, in cases consistent data becomes available. 
[bookmark: _GoBack]

[bookmark: _Toc193990309][bookmark: _Toc195759350]Figure 29 – Rural-based vulnerability index – current
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[bookmark: _Toc193990310][bookmark: _Toc195759351]Figure 30 – Rural-based vulnerability index – 2035
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[bookmark: _Toc193990311][bookmark: _Toc195759352]Figure 31 - Rural-based vulnerability index – 2055
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[bookmark: _Toc193990312][bookmark: _Toc195759353]Figure 32 - Density-based vulnerability index – current
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[bookmark: _Toc193990313][bookmark: _Toc195759354]Figure 33 - Density-based vulnerability index – 2035
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[bookmark: _Toc193990314][bookmark: _Toc195759355]Figure 34 - Density-based vulnerability index – 2055
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4 [bookmark: _Toc183449069][bookmark: _Toc193988232][bookmark: _Toc195759418]Uncertainty and Sensitivity Analysis
An analysis of each vulnerability index was performed where possible. For variables with multiple forecasts the mean value was used as the base estimates provided in the previous sections, and a standard deviation of the variation in estimates was added or removed from the variable’s values according to the direction in which it influenced the vulnerability index.
Some variable forecasts only provided one value, in which case it was not possible to include a sensitivity to them. Other variables were given what we considered to be reasonable ranges. The histogram plots below comparing the frequency for different vulnerability index ranges. The range of each bin was determined by splitting all non-zero scores for an index into 10th percentile ranges. Where the frequency of non-zero scores varied significantly, and extra histogram is provided to illustrate this.
Below each set of histograms is a list of the input variables that were altered to provide the sensitivity analysis.

4.1 [bookmark: _Toc193988233][bookmark: _Toc195759419]Baseline vulnerability index
Not complete yet
4.2 [bookmark: _Toc193988234][bookmark: _Toc195759420]Vulnerability index for Salmonella
Not complete yes
4.3 [bookmark: _Toc193988235][bookmark: _Toc195759421]Vulnerability index for Hantavirus
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4.4 [bookmark: _Toc193988236][bookmark: _Toc195759422]Vulnerability index for Cryptosporidium
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Precipitation of wettest month:		
Rural area %:				Low=20%, Normal = 25%, High = 28%
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Temperature difference between extremes:		

4.5 [bookmark: _Toc193988237][bookmark: _Toc195759423]Vulnerability index for Lyme borreliosis
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Min temperature of coldest month:		
AMJ total precipitation:				
Mean temperature of warmest quarter:	
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[bookmark: _Toc193988239][bookmark: _Toc195759425]ANNEX 1
	[bookmark: _Toc193990286][bookmark: _Toc195759362]Table 7 - Summary of the developed Vulnerability Indexes

	Index description
	Rationale
	Data inputs
	Equation/model
	Limitations/assumptions
	Variables included in the sensitivity analysis

	3.1 Baseline vulnerability index

	
	
	
	
	
	

	3.2 Vulnerability index for Salmonella

	Future incidence rate in year t for age group x (λ(t,x)) in a region
	
	
	
	
	

	Additional incidence rate above current levels Δ(t,x)
	
	
	
	
	

	Additional DALY impact for the region
	
	
	
	
	

	Per capita additional cost of healthcare burden
	
	
	
	
	

	3.3 Vulnerability index for Lyme borreliosis

	
	
	
	
	
	

	3.4 Vulnerability index for hanta virus

	
	
	
	
	
	

	3.5 Vulnerability index for Cryptosporidium
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Table 3.1. Projected global average surface warming and sea level rise at the end of the 21* century. {(WGI 10.5, 10.6, Table 10.7, Table SPM.3}

Temperature change Sea level rise
(°C at 2090-2099 relative to 1980-1999) > ¢ (m at 2090-2099 relative to 1980-1999)

Model-based range
excluding future rapid dynamical changes in ice flow

Constant year 2000
concentrations® . .3 - 0. Not available

B1 scenario E B . 0.18 - 0.38
A1T scenario . E . 0.20 - 0.45
B2 scenario . E . 0.20 - 0.43
A1B scenario . B X 0.21-0.48
A2 scenario . . . 0.23 -0.51
A1FI scenario X . . 0.26 - 0.59
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Figure SPM.5. Left Panel: Global GHG emissions (in GtCO,-eq) in the absence of climate policies: six illustrative SRES marker scenarios
(coloured lines) and the 80° percentile range of recent scenarios published since SRES (post-SRES) (gray shaded area). Dashed lines show the
full range of post-SRES scenarios. The emissions include CO, CH,, N,O and F-gases. Right Panel: Solid lines are multi-model global averages
of surface warming for scenarios A2, A1B and B1, shown as continuations of the 20%-century simulations. These projections also take into
account emissions of short-ived GHGs and aerosols. The pink line is not a scenario, but is for Atmosphere-Ocean General Circulation Model
(AOGCM) simulations where atmospheric concentrations are held constant at year 2000 values. The bars at the right of the figure indicate the
best estimate (solid line within each bar) and the likely range assessed for the six SRES marker scenarios at 2090-2099. All temperatures are
relative to the period 1980-1999. {Figures 3.1 and 3.2}
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