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SUMMARY AND CONCLUSIONS

The long term development goal of the Environmental Animal Health Management Initiative (EAHMI) is to promote sustainable agriculture and rural development, through environmental animal health management for enhanced smallholder livestock production in the Philippines. Three sets of objectives and corresponding activities have been identified to achieve this goal: strengthening institutional capacity; formulate strategies for enhanced smallholder production, and integrate the principles of environmental animal health management into national policy and planning objectives.

As part of the Initiative, this report is the first of several steps identified and is intended to review recent publications and study reports relating to spatial analyses of livestock resource distributions and animal disease risk assessments commissioned by FAO AGAH and other agencies; to review the remote sensing options and image processing requirements, and identify the most appropriate form(s) of remotely sensed imagery for spatial analysis of animal disease distribution and risk modelling in the Philippines.

Each of these topics are considered in some detail, with examples and references provided to illustrate the various alternative techniques for mapping the spatial distributions of agricultural parameters such as crops and livestock, as well as the most significant animal diseases. Those references available in electronic format are provided for download. and the advantages and disadvantages of the various types of satellite imagery available are also considered in the context of agricultural and animal disease mapping requirements for the Philippines. 

The imagery identified as most appropriate to the tasks at hand is that provided by the MODIS sensors on board the Terra and Aqua satellites that provide a wide range of environmental information from the year 2000/2001 to the present. Of the several possible resolutions, the one kilometre data sets are recommended as suitable for the envisaged spatial analyses, though some higher resolution data might prove useful in the medium or longer term, depending on the parameters selected for mapping.
The resources required to process the imagery into a format compatible with most of the spatial mapping techniques are detailed. 
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MAIN REPORT

1. Introduction and Background
The long term development goal of the Environmental Animal Health Management Initiative (EAHMI) is to promote sustainable agriculture and rural development, through environmental animal health management for enhanced smallholder livestock production in the Philippines. Three sets of objectives and corresponding activities have been identified to achieve this goal: strengthening institutional capacity; formulate strategies for enhanced smallholder production, and integrate the principles of environmental animal health management into national policy and planning objectives.
Strengthening capacity for environmental animal health management involves a variety of inter-related activities, including: assessing training needs; arranging appropriate training courses; compiling and reviewing available information; identifying gaps and alternative sources; networking and commissioning complimentary studies; and developing a geographical information system (GIS) for the livestock sector.
Establishing a livestock GIS is one part of creating a credible suite of spatial analyses envisaged by EAHMI, which depends on access to livestock and disease information that is substantially more detailed than the provincial level data currently available. This involves the creation of detailed maps of animals and their diseases. 
Based on the relative abundance of available records and expert opinion, the following species and diseases have been identified for targeted archival searches and detailed database compilation by EAHMI:

· Carabao and cattle: anthrax; colibacillosis; black leg; ephemeral fever; fasciolosis (liverfluke); hemorrhagic septicaemia; and surra (Trypanosoma evansi);

· Horses: surra (Trypanosoma evansi);

· Goats and sheep: colibacillosis; and orf;

· Swine: colibacillosis; hog cholera; and swine plague;

· Poultry: avian malaria; infectious coryza; and Newcastle disease.
Much of the available, centrally-held information about livestock resources and animal diseases in the Philippines are aggregated to provincial level. The reduced spatial resolution of aggregated data imposes a major constraint on the potential utility of spatial analysis to determine the correlates of disease distribution and risk mapping. 

Improved census data, enhanced by sophisticated distribution modelling, will be needed to provide the perspective needed for effective planning and disease prepardeness. This latter requires the identification of robust environmental correlates for animal disease and livestock resource distributions, and then obtaining the data needed to describe them, and acquiring the analytical and processing skills required to produce the essential distributions. 
This report is intended to review recent publications and study reports relating to spatial analyses of livestock resource distributions and animal disease risk assessments commissioned by FAO AGAH and other agencies; to review the remote sensing options and image processing requirements, and identify the most appropriate form(s) of remotely sensed imagery for spatial analysis of animal disease distribution and risk modelling in the Philippines.
The report is also intended to provide costs and recommendations for acquiring and processing the required imagery and to identify the consultancy inputs required to produce multivariate spatial analyses of distribution and risk modelling of priority animal diseases ; and, subject to obtaining meaningful results from that phase, model the potential spread of selected diseases under various scenarios.
2. Overview of Disease and Livestock Distribution Modelling
Country level statistics for both animals and diseases have long been provided by FAOSTAT and OIE respectively and suffice for many purposes. Time series of subnational animal population and production statistics, together with some disease data are provided by FAO’s Global Livestock Production and Health Atlas (GLiPHA).  For a number of countries – examples include Argentina, Brazil Finland, Malaysia Mexico, Sweden, Thailand, Turkey, UK, USA, - detailed livestock population data are provided on the web by the competent national agencies, though there may be issues of data suppression to maintain confidentiality. Subnational disease information is collated by specialist units such as FAO EMPRES, and again, national agencies such as the UK RADAR, or the USDA. Many of these data are downloadable in a format that is readily imported into Geographic Information Systems. 
Despite this increasing availability of animal health information worldwide, reliable and detailed disease and livestock population data tend to be the exception, rather than the rule. Information at high spatial resolution (usually greater than administrative level one) or covering several countries, is usually only available after substantial effort has been devoted to its acquisition, collation and enhancement, this last usually through some form of statistical distribution modelling.  

The types of distribution modelling relevant to livestock, animal disease vectors and the diseases themselves fall into a number of categories, depending on what data are available to incorporate into the models (the inputs) and what they are attempting to model (outputs). A major distinction is whether the outputs are simple distributions for a single moment in time, projections into the future, or step by step projected spread from a known distribution. For each of these, the outputs can be presence or absence, case number or density, or, for diseases, some measure that relates to the denominator population or survey effort, such as prevalence or incidence. 
These outputs vary enormously in the complexity of both the input information and the analytical processes required to generate the models. The simplest tend to be the snap-shot presence/absence models generated from known presence/absence data. The most complex tend to be predictions of spread in terms of density or prevalence, generated from a time series of case or density data. 

An important distinction must be made between modelling disease risks and distribution (the equivalent of range and density for animals). A location may be suitable for a disease or an animal, but it may not be present because it has not spread there. Methods that map potential risk do not therefore necessarily model the probability of occurrence, but rather the likelihood that a disease or animal will flourish if it reaches the locality specified. The probability of spread and establishment to a site may depend on completely different factors to those that determine any rise in density or prevalence once established. 
Some techniques – such as some fully process based models – rely on the fact that the processes that determine the distribution of a disease – such as introduction, transmission, recovery – are understood and can be linked quantitatively to known parameters (host population, causal parameters) for which maps are available. The required distributions can therefore be calculated from the causal factors, and the models require no knowledge of the disease or animal distributions beforehand. Because of the amount of information needed to construct such models, these are comparatively rare, especially for animals and most animal diseases. 

Most distribution modelling methods, however require observed data to ‘train’ the models by assigning values of covariates or potential predictor parameters to each observed case or location and establishing some relationship between target and predictor which can be used to calculate target variable (disease or animal) values at locations for which training data are not known. 

The most straightforward approaches simply map what is known – and apply, for example, known disease occurrence rates to host populations, thereby using population weighted prevalence data to provide predicted prevalence maps. These may be modified by factors assumed to influence the distribution of animal or disease – distribution limits, disease controls measures, and the like, for which data are often provided by expert opinion or ranked survey findings. 

More complex techniques generally fall into two types: 

(i) Those that simply enhance a distribution map, or points drawn from a distribution map (the ‘‘training set’’ data), through one or other pure ‘‘pattern-matching’’ approaches.  Those which are proven to be effective in mapping species distributions and have been incorporated into software for use by non-statisticians include neural network models (Bishop, 1996), k-nearest neighbour techniques (Dasarthy, 1991), tree-based classification methods (Breiman, 1984) and hybrids, such as GARP (Stockwell, 1999), that use genetic algorithms to improve on initial approaches using traditional methods (Box 1 and Appendix). Each aims to describe, as accurately as possible, the training set data in terms of a suite of predictor variables, from which a distribution prediction is made. While the end results of these alternative approaches are often maps with high levels of statistical accuracy, the biological insight they provide is minimal. 

(ii) Those that rely on statistical associations likely to reflect real processes that determine the distribution and abundance of organisms in space and time, such as discriminant analysis or logistic regression (Rogers, 2006) (Box 2 and Appendix 1). As well as modelling distributions, these techniques can be used to identify the variables that are most critical in determining disease or animal distributions.  They are thus particularly appropriate for use when the predictor variables used in the models are thought to represent, or be proxy for, real biological causes of distribution patterns. 

Box 1: Pattern matching species modelling methods suited to presence absence data

MaxEnt
Requires: Presence only point training data and environmental covariates

Produces: Presence/absence output maps

Software: http://www.cs.princeton.edu/~schapire/maxent/
Brief Description: Maximum entropy is a Bayesian approach that makes use of prior information in the form of spatially referenced species presence points. It attempts to map a species distribution by maintaining the least biased prediction that remains consistent with the given training data (Phillips, 2006).

Multi-Layer Perceptron Neural Network
Requires: Presence and absence point/polygon vector/raster training data and environmental covariates

Produces: Presence/absence output maps

Software: (within Idrisi Andes) http://www.clarklabs.org/products/innovations.cfm#MachineLearning
Brief Description: A Multi-layer perceptron is a non-linear statistical data modelling tool. It can be used to model complex relationships between inputs and outputs or to find patterns in data. The network is presented with training data in the form of presence/absence points and corresponding environmental data. Once trained, it is presented with the environmental data from locations for which predictions are required and the predictions are made and iteratively improved upon by adapting internal network weights (Bishop, 1996).

Fuzzy ARTMap Neural Network
Requires: Presence and absence point/polygon vector/raster training data and environmental covariates

Produces: Presence/absence output maps

Software: (within Idrisi Andes) http://www.clarklabs.org/products/innovations.cfm#MachineLearning
Brief Description: Adaptive Resonance Theory (ART) MAP neural networks are supervised learning models, which combine two simpler network structures. The first unit takes the input data, while the second takes the training data and provides adjustments to the first unit to optimize classification (Bishop, 1996).

k-Nearest Neighbour
Requires: Presence and absence point/polygon vector/raster training data and environmental covariates

Produces: Presence/absence output maps

Software: (within Idrisi Andes) http://www.clarklabs.org/products/upgrades.cfm#Classifiers
Brief Description: The k-nearest neighbour algorithm (k-NN) is a method for classifying objects based on closest training examples in the feature space. The training examples are mapped into multidimensional feature space. The space is partitioned into regions by class labels of the training samples. A point in the space is assigned to the class c if it is the most frequent class label among the k nearest training samples (Dasarthy, 1991).

Classification Trees
Requires: Presence and absence point/polygon vector/raster training data and environmental covariates

Produces: Presence/absence output maps

Software: (within Idrisi Andes) http://www.clarklabs.org/products/upgrades.cfm#Classifiers
Brief Description: Classification trees are used to predict membership of cases or objects in the classes of a categorical dependent variable from their measurements on one or more predictor variables. Classification trees are built through a process known as binary recursive partitioning. This is an iterative process of splitting the data into partitions, and then splitting it up further on each of the branches (Breiman, 1984).

Box 2: Biologically informative distribution modelling methods

Discriminant Analysis
Requires: Presence/absence or prevalence point/polygon vector/raster training data and environmental covariates

Produces: Presence/absence or prevalence output maps

Software: SEEG developed customised software

Brief Description: Discriminant analysis is a technique that assumes a multivariate normal distribution both of predictor datasets and also of the response variable, which can be an estimate of the probability of species presence/absence or prevalence. Linear discriminant analysis aims to find the linear combination of features which best separates two or more classes of object, e.g. presence and absence of a species (Rogers, 2006).
Logistic Regression
Requires: Presence/absence point/polygon vector/raster training data and environmental covariates

Produces: Presence/absence output maps

Software: (within Idrisi Andes, http://www.clarklabs.org/products/upgrades.cfm#LandChange, SPSS
Brief Description: Logistic regression allows one to predict a discrete outcome, such as group membership, from a set of variables that may be continuous, discrete, dichotomous, or a mix of any of these. Generally, the dependent variable is dichotomous, as is presence/absence. Discriminant analysis is also used to predict group membership with only two groups,  but can only be used with continuous independent variables. Thus, in instances where the independent variables are a categorical, or a mix of continuous and categorical, logistic regression is preferred (Rogers, 2006).

Multivariate regression
Requires: Continuous variable data for sample points derived from point of polygon data, and potential predictor covariates

Produces: Relationships between dependent and predictor variables that can be used to produce distribution maps

Software: Many GIS and Statistical programmes

Brief Description: Multivariate regression is primarily a technique used to explore statistical associations between dependent and predictor (independent) variables for a series of cases. By geo-referencing the case locations, relationships can be derived for and applied to spatially explicit locations. Categorical information can be used to define analyses groups but is not recommended for inclusion within the predictor suite unless the numerical codes have quantitative meaning (Jobson, 1991).
The complexity of implementing the different techniques varies considerably– some are accessible from within GIS and software packages such as ArcGIS, Idrisi, or SPSS, whilst others are available as standalone utilities that require some level of programming capability to customize and implement in environments such as R (Venables, 2005), and yet others require complete customization and substantial programming skills. The selection of the method used may depend on the number of models to be produced, and the amount of exploratory analyses needed to select the final models used: a single model can use a complex method, whereas many models may be better assessed by using a software package that simplifies the process by menu or script driven implementation. 

Following modelling and prediction, the results should be tested to gauge the accuracy of the predictive maps. A range of accuracy assessment metrics exist for achieving this, and ideally, as many as possible should be calculated to account for the advantages and disadvantages of each. The Appendix and Table 4 summarises the options available. Such approaches should also ideally used as part of the modelling process, to iteratively assess accuracy improvements through the addition/removal of variables and changes in parameters.
The range and variety of potential methods are thus very wide, and selection of the most appropriate depends on several factors: data available, data output required, and analytical software and skills available. 
A critical determinant of the methods than can be used is the type of training data available. Simple presence can be used for some of the species modelling techniques outlined above, though for many, including the discriminant analysis and logistic regression methods, simple presence is not enough, and known absences are also required.  This can be a problem if disease or animal information is obtained from reporting rather than surveillance, unless it is assumed that no reports equate to absence. 

If densities, case numbers, incidence or prevalence data are available, then the interpolation and multivariate methods can be used, though logistic regression is unsuitable here, as it is restricted to modelling categorical (usually binary) observations. Discriminant analysis can be used, providing there are known absences. 

In some instances, however, such continuously varying training data may not be as useful as it appears at first sight, because the numerical differences may reflect variable surveillance or reporting effort, rather than genuine differences in disease or vector occurrence. In such cases it may be more reliable to convert levels into presence or absence, and then aggregate the presences within regular spatial units into some measure of density. 

In the field of animal health, distribution modelling has tended to fall into three categories: the animals themselves, disease vectors and the actual diseases themselves. FAO and allied international agencies (e.g. IAEA, ILRI, DFID) have devoted significant efforts towards developing methods for the first two of these topics, and less to the third, which has tended to fall under the remit of more academic institutions. The following sections describe in more detail the salient features of the major statistical modelling methods, and provide a number of examples drawn primarily from projects commissioned by the international agencies. The data required as input to the models are also considered. 
2.1. Modelling Livestock Distributions – the Denominator Populations

2.1.1. Overview of Techniques

Whilst ecological species modelling is often satisfied with defining ranges or suitability maps, this is not especially useful for domestic livestock, not only because they are more or less ubiquitous, but also their economic and epidemiological relevance lies in their density, not merely their presence. 
Many of the methods used to produce human population maps would, at first sight, be suitable to apply to livestock. These include interpolation and smoothing (kriging and the like), or redistribution/disaggregation of polygon populations in relation to known features (e.g. roads, urban boundaries) as provided by the Global Rural Urban Mapping Project (GRUMP) (Balk, 2006) or Landscan (Dobson, 2000) human population layers. 
These datasets rely, however, on fairly complete input data and are not adept at filling in gaps in the observed information. As most agricultural data is, to say the least, patchy, especially for the lower profile species, in the more remote areas, these methods tend not to be effective, and either weighting or statistical distribution modelling must be used instead. 
Various weighting techniques have been used to assign national population figures within countries. The least contentious is to ‘remove’ animals from areas where they can be assumed not to exist (e.g. glaciers, deserts, vertical slopes, tropical rainforest, water bodies and protected areas) and add these to the remaining ‘habitable’ areas. This ‘suitability mapping’ approach is discussed in more detail in Section 4.3.

More ambitious (and thus less assured) methods have utilised the link between domestic livestock and human densities in partitioning national figures for populations (Wint 1996a), production (Wint 1996b) and commodities within agro-ecological zones, according to human population levels. This technique can produce some serious anomalies, which may be resolved to some extent by refining the ecological zonations used (White 1998).

Extrapolation, or distribution modelling, based on some established statistical relationship(s) between livestock numbers and a variable, or variables, for which data are available for all the areas of interest have been used to predict a wide range of animal distributions, including birds and mammals (Skidmore 2002), and a wide range of disease vectors, including mosquitoes, midges, tsetse flies, and screworm (see below). FAO has devoted considerable effort to developing this suite of techniques for application to domesticated livestock species at continental level (e.g. Wint and Rogers 1998; Wint et al. 1999), which have now been extended and enhanced to generate the Gridded Livestock of the World Datasets, first released in 2006 (Figure 1). 
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Figure 1: Extract of FAO Gridded Livestock of the World, Bovine Densit
Source: FAO (in press)
The methods used to produce the GLW comprise three major stages discussed in the following pages: the collection and processing of available census and survey data into a standardised data information system; and then processing the available data to produce medium resolution distribution maps using statistical modelling methods. These are discussed in the following sections.

2.1.2. GLW Training data collection
The first stage in the GLW mapping process is to collect the available sub-national livestock statistics, usually for each country. These may be collected and presented in a number of different ways, which can affect the subsequent processing required.

For many years FAO has collated and distributed national level data on livestock and related commodities, through the well-known FAOSTAT database.  More recently, however, efforts have been put in place to systematically collect, manage, process and distribute sub-national livestock data.  This was originally carried out at the administration level 1 (usually the province), through the GLiPHA project, and has been expanded more recently to incorporate data at the highest available spatial resolution, in support of the Gridded Livestock of the World initiative.  
Underpinning the information system is a growing network of providers of sub-national livestock data. The sources of data are very diverse and include contacts within national departments, statistical year books, development project documents, and an increasing number of sources of livestock data that are available over the Internet. Indeed even over the four year development of these distributions, the rise in official web pages has been remarkable. A database of national partners responsible for livestock statistics, together with website hyperlinks is maintained in order to provide feedback and value-added data products.  
Hand in hand with the livestock data is georeferenced information on sub-national boundaries; sometimes provided with the livestock data but, more usually, different departments are responsible for producing and maintaining these geographic data.  This means that the livestock statistics need to be matched with the available administrative data, based on administrative unit names or codes, using either the SALB or GAUL datasets

Once acquired, the raw livestock and boundary data are digitised and managed via a web-based interface to an Oracle database. A number of data verification procedures are embedded, including a direct link to the FAOSTAT database from which country totals are compared against FAO’s ‘official’ statistics.

2.1.3. GLW Supplementary and missing data

Census and survey records are often incomplete and have gaps that need to be filled to provide complete maps. Various methods have been devised to generate credible estimates of missing data. There are, for instance, many areas where the number of animals present is known, or can safely be assumed, to be zero – either from country level statistical records, such as FAOSTAT, or because of cultural prohibition, such as the ban on pigs in most Islamic countries. Known zeros can also be derived from land suitability masking – in which areas unsuitable for specific types of livestock are defined according to various climatic, demographic and topographic criteria:  e.g. cattle don’t usually live in deserts, or the middle of rainforests. The definition of suitable land is discussed below.

In some instances, particularly for less common species, only country level population figures are available – often from FAOSTAT, because census summary data, or yearbooks, do not include sub-national figures. These can be treated by assigning animal numbers at to administrative areas according to the land area of the units, or by weighting the assignment of numbers by some other relevant parameter, such as human population, for which administrative level data are known. 
Use of human population distribution to apportion livestock populations is often most appropriate for poultry and pigs, which, in developing countries, are closely associated with human populations, bearing in mind that there is often a distinction between traditionally reared and intensively reared production, which should me treated separately. In such manipulations, administrative level data, rather than pixel values, are used to assign polygon densities. Human population must then be excluded from the suite of predictors used in any subsequent distribution modelling (Section 5). 
Complete sub-national population datasets for all livestock species are not available for all countries. Some have administrative level data available for only part of the country because of incomplete enumeration, or data suppression to ensure confidentiality. These incomplete datasets can often be rectified using data available for a higher administrative level to calculate the missing densities by subtraction. 
2.1.4. GLW Suitability

Deserts, lakes and high mountains are unsuitable for either arable or livestock production. Cultivation and animal husbandry are also not usually allowed in national parks or game reserves. Such factors obviously have to be taken into account in producing maps of livestock distribution in which densities indicate the number of animals per square kilometre of land suitable for livestock production, rather than simply of total land area.

Table 1: Criteria used by the FAO GLW to define suitability for livestock
	
	Map Layer

	Suitability Criterion
	Ruminant livestock/crops 
	Monogastric livestock

	Protected areas (1/0)
	1
	1

	Population density (Landscan) (km-2)
	> 1,500
	> 1,500

	Lights (Landscan) (%)
	> 90
	> 90

	Slope (Landscan) (%)
	> 40
	-

	Elevation (m)
	> 4,750
	> 4,750

	Pasture suitability (IIASA) (% area)
	0
	-

	NDVI max
	< 0.07
	-

	Tree cover - S. America (Maryland GLCF) (%)
	> 75
	-

	Tree cover - rest of world (MODIS) (%)
	> 95
	-

	Land cover (Landscan) – water (1/0)
	1
	1

	Land cover (Landscan) – developed (1/0)
	1
	1

	Land cover (Landscan) – partly developed (1/0)
	1
	1

	Land cover (Landscan) – wetlands (1/0)
	1
	1

	Land cover (Landscan) – wooded wetlands (1/0)
	1
	1

	Land cover (Landscan) – tundra (1/0)
	1
	1

	Land cover (Landscan) – snow and ice (1/0)
	1
	1


Areas known to be unsuitable for livestock must be defined and delineated using standard criteria that can be applied, so that animal densities in those areas can be set to zero. By way of illustration, the FAO GLW data layers used a series of standardised global maps to define separate unsuitability criteria for ruminants and monogastrics (Table 1) 

Many of these criteria are not relevant to the Philippines – snow/ice or desert for example, and it may also be necessary to tailor the definitions for a number of the layers to meet specific local conditions – as discussed in the following paragraphs. Setting the thresholds to match the Philippine environment will require detailed assessment of the known distribution of livestock species.

Demographic factors: 

Cities may be defined as unsuitable for livestock, though not necessarily for intensively reared animals which are often concentrated in peri-urban areas. Though global human population datasets exist which allow the very high density areas to be delineated, it may be preferable to treat intensive and extensive livestock populations separately, in the likelihood that the intensive rearing implies higher levels of development and thus better available records which would allow for direct mapping of survey or census results rather than modelling. 
The reverse, however, i.e. a an area with no human population cannot be guaranteed to be devoid of livestock as some domesticated animals may be kept, at least temporarily, considerable distances from the stockholders residence.

Cultural factors may restrict the distribution of certain animals – for example pigs are usually uncommon in predominantly Muslim areas. 
Environmental factors

A number of environmental conditions will tend to preclude significant numbers of certain livestock species. Depending on their classification, and the level of enforcement, protected areas generally exclude livestock. Undisturbed (closed canopy) forest, steep slopes, high altitudes, wetland areas, or deserts will all exclude one or more livestock species. In areas like the Philippines it is especially crucial to define the suitability thresholds of forest and wetlands correctly.
Most of these parameters can be mapped at comparatively high resolution from remotely sensed data; forest from MODIS or Land Cover maps derived from other sources; elevation and slope from public domain digital elevation maps such as that produced by the Shuttle Radar Topography Mission (SRTM)
2.1.5. GLW Animal Numbers

Once the available agricultural statistics have been collected, standardised, enhanced with supplementary data and adjusted for the extent of land deemed suitable for livestock production, the resulting data archive provides a sound basis for statistical distribution modelling. This process depends on establishing a robust statistical relationship between livestock numbers and one, or more, predictor variables for which data are available for the entire area of interest. 

The modelling process, including the inputs and outputs at the various steps is summarised in Figure 2.  This relies on the use of raster images to store both observed (or training) data (i.e. livestock densities) and all the predictor variables. Statistical relationships are established between observed and predictor variables using values extracted for a series of regularly spaced sample points, as illustrated in the figure. The resulting equations are then applied to all the pixels in the predictor images, to produce a predicted distribution map. 
Figure 2: Livestock distribution modelling
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As a result, the technique can be used to predict livestock distributions in areas for which no livestock data are available, i.e. filling in gaps. Moreover, because predicted distributions are produced at the resolution of the raster imagery, the models generate heterogeneous distributions within polygons that have only a single observed value, thus disaggregating the original data. For limited datasets therefore, the method has the major advantage of both filling in gaps and refining the level of detail that can mapped.

A wide variety of predictor variables are used in the GLW modelling process, embracing environmental, demographic, climatic, agricultural, topographic, and infrastructural factors. The majority of environmental and climatic parameters are derived from either public domain global datasets (elevation, landuse and land cover, human population), from GIS processing (distance to features such as roads and towns) or from remotely sensed satellite imagery. 

The remotely sensed predictor variables used are derived by Temporal Fourier Analyses (TFA) from the Advanced Very High Resolution Radiometer (AVHRR) imagery carried by the NOAA satellites (Hay, 2006)(see also Section 3). These have provided global measurements of climate surrogates since the early eighties. The archive used runs from 1982 to 2000, with images available for every 10 day period (dekad), and consists of Land Surface Temperature, Middle Infrared, Air Temperature, Vapour Pressure Deficit, Normalised Difference Vegetation Index (Hay, 2006). These TFA variables have proved an essential core to the predictor suite used in the distribution modelling as they provided an efficient way of incorporating globally standardised eco-climatic information from an extended period into the analyses. 
The predictors of animal density are unlikely to be consistent from region to region, and the modelling process should, therefore, be run at several different spatial scales to provide a range of predictive relationships appropriate to specific areas. As well as administrative level analyses, an ecological stratification has also been routinely used on the assumption that the factors determining animal distributions are likely to be similar in areas with comparable ecological characteristics, thereby allowing a) more robust statistical relationships between training data and predictor variables to be established, and b) more realistic predictions of livestock densities in other parts of the same ecological zone for which data are not available. 

For the GLW outputs the ecological zones used to stratify the modelling were defined separately for each continent using non-hierarchical clustering techniques, either within the ADDAPIX programme (Griguolo and Mazzanti 1996) or ERDAS Imagine software (Leica Geosystems®). The input parameters were drawn from the suite of predictor variables and included elevation and a series of remotely sensed parameters (the mean, Fourier component 1 phase of middle infrared, land surface temperature, vegetation index, air temperature, vapour pressure deficit).
The numerical outputs of distribution modelling generally have similar mean values per polygon as the training data, but rarely matched exactly, because regression analysis tends to smooth the peaks and troughs. In addition to the standardisation imposed by the suitability masking, to minimise inconsistencies between original records and summed predicted values, model predictions for small polygons – defined as less than 1,000 km2 – were replaced by suitability corrected training data. 

Two sets of standardised outputs are routinely produced, in addition to the ‘raw’ model outputs: a) Model distributions corrected so that totals calculated for training polygons matched the input training data, referred to as ‘totals-corrected’ outputs, and b) Model values adjusted so that calculated national totals matched the FAO-STAT country populations for year 2000, the so-called ‘year 2000-corrected distributions.’

These corrections involved calculating a ratio between predicted and training data values for each polygon of observed (training) data and then applying the inverse of that ratio to the predicted data densities, except where training data were absent, in which case predicted values were left unchanged. 

Of the three versions of livestock distribution based on: suitability corrected observed data; suitability and totals corrected; and suitability and year 2000 corrected; the suitability and totals corrected version is used most widely.
2.1.6. Yield and Production

Though milk yield and meat (or for poultry, eggs and broiler) production could also be modelled directly from census training data, FAO’s GLW has yet accumulate sufficient training data to make this possible at the global scale. Instead some attempts have been made to apply production levels characteristic of farming systems or countries to the GLW animal densities, to provide first approximations of subnational distributions of milk and beef yields. 

It is widely acknowledged that production levels – as they relate to the levels of intensification – are likely to be important indicators or disease risk – both through the effect of intensification on infection and transmission probability, and though the levels of veterinary care associated with different stages of the intensification process. 

Incorporation of some measure of production intensity into any disease risk assessment in the Philippines would therefore seem to be desirable, either as categorical variables used to sub-divide host populations, or as predictor variables within the modelling process. The ratio of the Bureau of Agricultural Statistics’ provincial estimates of commercial and back yard populations may be some utility in this regard.

2.2. Animal Diseases
As with the animals considered in the previous sections, the types of disease model possible depends on what is already known about the disease. Process based modelling generally relies on experimentation and manipulation to identify the causal factors that can then be used to predict disease levels. An example of such an approach is the “R nought” modelling (Anderson & May, 1992) that is based of theoretical modelling approaches derived from the basic definitions of the reproductive number R0, the quantity which describes the rate at which a disease can spread.  The outputs can be mapped if one or more of the input parameters can themselves be mapped (i.e. the model essentially provides multipliers for known distributions of predictor or host parameters). In general, however, this approach requires a detailed understanding of all aspects of a disease, a rarity in the animal health field, and accordingly not considered here. 

More common are those methods that do require some information to be known about the disease and its distribution. This information may be simply weighted by various relevant additional factors (Section 2.2.1), or analysed to reveal spatial patterns (such as clustering) which may be of epidemiological significance (Section 2.2.2). Many are based on the use of observed data to calibrate or ‘train’ statistically derived relationships between disease or vector distribution patterns and associated predictor variables for which full distributions are known (Section 2.2.3) 

A distinction needs, however, to be made between modelling static disease distributions or abundance and producing dynamic models which can project the possible spread (or contraction) of an established disease. These considered are separately in Section 2.2.4.
2.2.1. Weighting, and expert opinion

A comparatively strainghtforward way of estimating and mapping disease occurrence is to weight the known host densities by recorded prevalence (or incidence) levels. This corrects for host abundance, so that maps show less disease to be present where there are fewer animals, but it does require quite detailed information about the disease distributions.

If such quantitative epidemiological information is not readily to hand, various ranking methods can be applied, derived either from for example categorised survey data or from expert opinion. Examples of such disease mapping are the assessments of trypanosomiasis risk used to identify potential areas for control efforts in Uganda (Robinson et al, and recent global FMD estimates carried out by the European Food Safety Authority (EFSA, 2006)
In the former the objective was to prioritise areas for trypanosomiases vector control efforts, a process determined as much by economic as by technical considerations. The weights were assigned by consensus through an iterative process of workshops, by decision-makers and other stakeholders in the livestock sector. A weighted linear combination method was then used to combine the relevant spatial data to identify such priority areas (Robinson et al 2002). 

The priority map shown in the Figure was then produced by summing the weighted input criteria to target interventions in Uganda: the area of high priority (coloured red) around the Lake Victoria area was selected as the zone in which the initial activities would be implemented Figure 3. GIS techniques can then calculate the numbers of target animals and stockholders likely to be affected within the priority regions. 
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Figure 3: Priority map for trypanosomiasis control in Uganda (derived from Robinson et al 2002)

The FMD assessments by EFSA use a density weighted prevalence (density times assigned incidence rates for number of country categories) modified by a normalised score derived from summed ranks assigned to a series of relevant factors (e.g. veterinary capability, movement control efficiency, disease serotype). This produces a quantified prevalence index from what is essentially expert opinion and animal density. (Figure 4)
[image: image15.jpg]


Figure 4: FMD prevalence index, from animal density and expert opinion

Source: EFSA (2006)
These methods have the major advantage that they can incorporate qualitative information into first approximation quantitative estimates, and are often used to include not only expert opinion but also socio-economic findings within disease assessments. Given the variety of such data held within its archive, these may prove useful for the EAHMI. 

2.2.2. Clustering

Many disease mapping studies are, in effect, aimed at targeting limited resources, many methods therefore concentrate on identifying spatial clusters of disease occurrence, because it is assumed more new cases will occur in clusters, and that treating such clusters will have more impact than devoting control efforts to outlying or remote cases. 
This requires comparable disease records from all areas, and so fairly comprehensive surveillance, but can use both presence and absence and incidence/prevalence data, usually in vector format. Many analysis utilities are available to assess clustering statistics and identify cluster centres and boundaries– both within mainstream Geographic Information Systems such as ArcGIS and Idrisi, and in widely used standalone software packages such as SatScan. 

Clustering methods have been applied to many diseases, including Rabies in Europe (Solymosi et al, 2002) and North America (Berke, 2005) to identify populations at risk (i.e. those uninfected hosts in or near identified disease clusters are taken to be most at risk. Control efforts may also be focused within buffers surrounding discrete outbreak clusters, if they can be identified reliably. Temporal clustering in Rabies has also been studied by a number of researchers including Tinline and Macinnes (2004), in order to investigate the relationships between disease sub-type and environmental parameters, with a view to understanding the processes of emergence within new areas. 
2.2.3. Statistical Distribution Models
Raster (image)- based statistical modelling methods similar to those used for animal distributions covered in previous sections have been used extensively for some years to produce distribution maps of relevance to animal health. These include insect pests such as screw worm (Rogers, 1998), and more particularly, disease vectors of animals and humans, for example the tsetse fly (Figure 5) which carries trypanosomiasis (Rogers 1996, FAO 1999, IAEA 2003), mosquito vectors of malaria (Rogers et a, 2002, MAP 2006) and yellow fever (Rogers et al, 2006), culicoid midge vectors of bluetongue, (Tatem, 2003), and ticks  (Randolph, 2000). 
Figure 5: Tsetse fly distribution model, Southern Africa

[image: image4]
Source (IAEA, 2003).
Diseases themselves have also been modelled in this way, including dengue fever and malaria in people (Rogers et al, 2002: Omumbo, 2005), West Nile Virus in birds (Rogers et al, 2002b), a wide range of tick borne encephalitis viruses (Randolph & Rogers, 2000), avian flu (Gilbert et al 2004) and bovine tuberculosis (Wint et al 2002, Gilbert et al, 2005) as shown in Figure 6. All these have been modelled using methods based on either multivariate and logistic regression or discriminant analysis. 
These approaches all depend on a wide range of predictor variables being available to the statistical modelling process, - as set out above for livestock. The most important of these are the remotely sensed surrogates for climate and vegetation, which are considered at some length in Section 3 below.

The interpretation of such models varies significantly according to what is mapped. Whilst there is often a correspondence between the probability that a vector is present, or its abundance, and the levels of disease risk, the actual levels of disease will be modified by epidemiological factors such as vectorial capacity, vector abundance, host contact rate as well as host abundance and susceptibility. Models trained on vector presence tend therefore to produce maps better described as potential limits of disease distribution rather than disease risk. 

Models based on disease presence or level, on the other hand, tend to more effectively predict the disease itself, especially in areas similar to those covered by the observed data. They are also likely to highlight some areas where a disease is not yet present, but where there is a high risk of outbreak. They are less effective however at identifying areas where a disease could flourish if it was introduced into new areas that differ markedly from places where a disease is known to occur. 

Many of these distribution models are therefore effective at identifying the areas where a disease could occur if it was introduced or spread from elsewhere. They are also useful to define likely disease risk in areas where some disease is already present and but only limited disease data are available to calibrate the models. Such models may also point towards causal links between disease and predictor. 

These models are, however, essentially static and less effective at predicting or projecting potential disease spread or contraction, which is considered in the following section. 

2.2.4. Projection and Spread Modelling
Producing predictive maps of the likelihood of introduction and spread is less well developed than the static maps just described. At its simplest, producing maps of spread may be akin to the density weighted incidence maps described shown in Figure 4. These are a matter of applying tried and tested epidemiological outbreak models that provide cases numbers or prevalence estimates to known distributions of the host population.  The challenge is therefore in the modelling rather than the spatial application of the models. 

Using spatial approaches in estimating projection and spread is usually substantially more complicated than that of mapping fixed distributions, not only because the data needed to train spread models is multi-temporal, but also because the technique needs to correctly model changes over both time and space in order to achieve an accurate result. 
One way to simplify the process of projection, is to build a static model that incorporates a predictive parameter that changes over time, or incorporates the distributions of the disease at a known point in time. Thus the model may be constructed for a distribution in 2005, using data from 2003, then same model may be used, substituting the predictor data for 2003 with that for 2005 to produce projections for 2007. An example for this type of projection is shown in Figure 6, for bovine TB in the UK (Wint et al, 2002). The prediction for 2005 was made in 2003, and is compared in the figure with the actual distribution recorded in 2005. 
This approach assumes that the embedded statistical relationships remain constant over time, an assumption which is likely to be true in the short term, but less and less likely as the projection interval lengthens. These methods are not, therefore, to be recommended for medium or long term projections
Figure 6: Bovine TB projection for the UK,  2005, made in 2003. 
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Source (Wint et al 2002) Actual distribution in 2005 inset

Longer term spread modelling requires the input from either a comparatively long time series of disease data, which may be able provide less labile predictive relationships, and thus a more reliable projection into the future, or may be based on more complex modelling procedures that incorporate distance related spread parameters, and multiple iterations of the implementation of statistical models modified by stochastic identification of outbreak locations (e.g. Gilbert et al, 2005). In these, the basic disease predictors are identified by statistical modelling of disease distributions from several years, which are then used to produce predicted distributions for several consecutive years from a known starting point. 
Yet more complex methods include cellular automata modelling (Preston, 2001), which relies on the application of known rules for spread (e.g. direction and rate in relation to distance from the start or some specific covariates for which distributions are known). These are applied pixel by pixel to a known starting distribution, with every cell having the same rule for updating, based on the values in its neighbourhood. Other computationally complex models are based on network neighbourhoods, with spread determined by the relationship between an initial location (or node) and one connected to it by, for example, the movement of hosts, vectors or disease pathogens. A single node may be connected to many others to form a network of potential connections and routes of spread.
Such methods require (e.g. Smith et al, 2002 for rabies) detailed and quantitative observed knowledge about the disease and its distribution, and the causes of its transmission from one point to another. As such, they are perhaps most appropriate for those situations in which a disease has been closely monitored and studied for a considerable period, rather than to an animal health initiative in the early stages of information acquisition and data archive compilation. 

3. Remotely sensed predictor variables

As mentioned throughout the preceding sections, remotely sensed information provides an essential core to the predictor parameter archive used in any of the modelling techniques that rely on covariates to observed data to predict distributions. There are an increasing number of remotely sensed products now available in the public domain, and choosing the most appropriate involves evaluating them against a number of selection criteria. 
Temporal, spatial and spectral resolutions are all extremely important factors in determining the utility of a satellite-based sensor for epidemiology studies, and the geography of the Philippines places some immediate constraints on imagery and processing choices. The Philippines encompasses a land area of around 300,000 square kilometres, but within a bounding box approximately 1500 kilometres square (or about 2.25 million square kilometres) this represents a considerable task in terms of remote sensing data acquisition, compilation and processing. 

Two specific features of the geography of the Philippines determine the choice of ideal imagery for epidemiological studies: (i) it’s humid climate and (ii) the number of small islands.

(i) Climate: The tropical climate of the Philippines means that average annual cloud cover for the majority of the country is 60-70% (Figure 7), and in highland areas this figure is even higher. To ensure a complete satellite coverage of the country is achieved at multiple time periods during the year (to provide epidemiologically-important seasonal information) therefore, a satellite sensor with a comparatively high frequency of image capture is required to minimise the effects of cloud cover. Though active (radar) satellite sensors can sense through clouds and, therefore, remove this constraint, their use in epidemiology is limited 

(ii) Islands: The Philippines is made up of 7,107 islands, and with the 11 largest islands comprising 95% of the land area, the majority of islands are small in area. Such a geographical make-up dictates that to ensure complete and detailed satellite coverage of the country, the chosen satellite sensor should have sufficient spatial resolution to resolve the smallest islands

Figure 7: Global mean annual cloud cover
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Table 2: Major Characteristics of Types of Satellite Imagery
	Resolution Class
	Satellite
	Sensor
	Spatial

Resolution (m)
	Swath width (km)
	Repeat time (days)
	Number of bands
	Epidemiologically relevant variables
	Approximate number of images to cover the Philippines
	Approximate Phillipines coverage cost (US$)

	Fine
	IKONOS
	IS
	1-4
	13
	3 (on request)
	5
	LC, NDVI
	2480
	600,000

	Fine
	Quickbird
	QS
	0.6-2.5
	16.5
	3 (on request)
	5
	LC, NDVI
	1170
	600,000

	Fine
	OrbView-3
	II
	1-4
	8
	3 (on request)
	5
	LC, NDVI
	4690
	600,000

	Fine
	SPOT-5
	HRG
	5-10
	60
	1-4 (on request)
	5
	LC, NDVI
	100
	290,000

	Medium
	Landsat
	TM
	15-60
	185
	16
	7/8
	LC, NDVI, LST
	15
	20,000

	Medium
	SPOT-4
	HRVIR
	20
	60
	4
	4
	LC, NDVI
	40
	125,000

	Medium
	Terra
	ASTER
	15-90
	60
	4-16
	14
	LC, NDVI, LST
	40
	12,800

	Medium
	Radarsat
	SAR
	25
	100
	24
	1
	SM, WB
	30
	90,000

	Medium
	ERS-2
	SAR
	25
	102.5
	35
	1
	SM, WB
	30
	66,000

	Medium
	Envisat
	ASAR
	30
	100
	35
	1
	SM, WB
	30
	16,000

	Medium
	JERS-1
	SAR
	18
	75
	44
	1
	SM, WB
	50
	75,000

	Coarse
	SPOT-4
	VGT-1
	1000
	2250
	1
	4
	LC, NDVI
	4
	0

	Coarse
	NOAA-16/17
	AVHRR
	1090
	2800
	0.5
	5
	LC, NDVI, LST, MIR, VPD, TAIR
	4
	0

	Coarse
	Terra
	MODIS
	250-1000
	2330
	1
	36
	LC, NDVI, EVI, LST(D/N), MIR, ET, WB
	4
	0

	Coarse
	Aqua
	MODIS
	250-1000
	2330
	1
	36
	LC, NDVI, EVI, LST(D/N), MIR, ET, WB
	4
	0

	Coarse
	Envisat
	MERIS
	300-1200
	1150
	3
	15
	LC
	16
	1000

	Coarse
	OrbView-2
	SeaWiFS
	1100-4500
	1502
	1
	8
	LC, NDVI
	12
	500


LC=Land Cover, NDVI=Normalized Difference Vegetation Index, EVI=Enhanced Vegetation Index, LST(D/N)=Land Surface Temperature(Day/Night), MIR=Middle Infrared Reflectance, SM=Soil Moisture, VPD=Vapour Pressure Deficit, TAIR=Air Temperature, ET=Evapotranspiration, WB=water bodies (permanent and ephemeral).

With these constraints in mind, the characteristics of each candidate satellite imagery type have been assessed and are summarised in Table 2. Details are provided in the Appendix, and the advantages and disadvantages in terms of potential use in epidemiological studies in the Philippines set out in the following paragraphs. The assessment has been divided according to spatial resolution, into three groups: fine (up to 10m), medium (10-100m) and coarse (more than 100m)

3.1. Fine spatial resolution imagery

Fine spatial resolution satellite sensors are typically classified as those producing imagery of spatial resolution less than 10 metres, which means that at least 100 and as many as 2500 images are needed to cover the whole of the Philippines once.  Such high resolution satellite sensor imagery has only been in the public domain for the last 5 years, so its use in epidemiological studies has, so far, been relatively unexplored.
The principal candidate fine spatial resolution satellite sensors are described in Appendix 1 below, with main features distilled in table 1. They include IKONOS, OrbView, QuickBird and SPOT-HRG. Extremely fine details are visible as shown in Figure 8 of the international terminal at Manila Airport
Figure 8; Quickbird Image of Manila Airport International Terminal
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Source http://maps.google.com Accessed December 16th 2006
3.1.1. Advantages, disadvantages and recommendations

The major advantage of these types of imagery lie in the unprecedented level of spatial detail they can provide. With the advances in panchromatic-sharpening approaches, multispectral information at resolutions of 1 metre or less (62cm) can be produced - enough to see livestock and people. As a result, many have advocated its use as a tool for disease vector breeding site identification and monitoring and detailed habitat evaluation. 
The popularity of such imagery for online atlases such as Google, Microsoft Virtual Earth and live.com, and their regular use for urban planning means that continued use and future missions are assured, with imagery archives building and prices likely to fall slowly.

In addition, these satellites generally carry sensors that can monitor near infrared reflectance bands which means that a vegetation index variable, often of relevance in epidemiological studies, can be readily produced, and habitat monitoring is a real possibility. Conversely however, often only 4 or 5 spectral bands are provided, meaning that the production of the full range climatic and environmental variables that have been used successfully in many satellite-based epidemiological studies is impossible.
There are some other disadvantages to this otherwise remarkable imagery. The spatial extent of each image produced means that to cover an area the size of the Philippines, even though there would be comparatively little wasted in coverage of the sea, hundreds of images would be required. Leaving aside the IT processing and storage requirements of processing so many large files, the cost of the imagery is so high that even a single complete coverage of the Philippines would be prohibitively expensive (see table 2).

Though images are available on request (and at extra cost) every three days, the default coverage is comparatively infrequent and inevitable cloud cover when images are captured makes the production of reliable multitemporal image sequences very difficult. Any composites covering large areas would most probably be from differing time periods with differing illumination levels and seasonal effects, so that mosaicking them to a consistent product would be exceptionally difficult and computationally challenging. 
Thus, unless local maps of possible vector breeding sites or land cover are required at individual points in time, the prohibitive costs, lack of possible relevant derived variables and difficulties in obtaining consistent multitemporal sequences, all mitigate against the extensive use of such imagery for animal health applications.

3.2. Medium spatial resolution imagery

Medium spatial resolution satellite sensors are typically classified as those producing imagery at a spatial resolution of 10-100m. The major medium resolution satellites are Terra,  Landsat and SPOT, the last two of which have long history, and for which continuity missions or replacement missions with similar sensors are planned.  Consequently image archives have been built up which stretch back over 20 years and are likely to be maintained and expanded well into the future (see also Appendix and Table 2).

3.2.1. Advantages, disadvantages and recommendations

The medium spatial resolution satellites carry sensors that can provide data on land cover, land surface temperature, and vegetation indices, and as such are potentially well suited to use in epidemiological and distribution modelling, The long established archives have encouraged the development of many processing and analytical procedures, which are widely available and fully tested. Much of the imagery is free or available at fairly low cost, which has again encouraged its widespread adoption and use, particularly in the area of land use and land cover assessment, for which the SPOT HRV and LANDSAT TM data sets are widely acknowledged to be valuable sources of high quality information (Campbell, 2002).

Despite these apparent advantages, these image sources are not widely used in large scale (spatially extensive) epidemiological or distribution modelling studies. This is because the repeat times of the satellites are rather long, and it is according extremely difficult to compile consistent and reliable multitemporal image sequences with acceptably low levels of cloud cover (see Figure 5).  In addition, the range of sensors is comparatively limited, when compared to the coarse spatial resolution satellites, which limits the number of potential predictor variables they can provide.

Figure 9: A Multiband Landsat ETM Image of Manila, Nov 2001
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Source http://infomart.soest.hawaii.edu/. Hawaii Synergy Project
Equally important, the spatial extent of each image produced means that to cover an area the size of the Philippines, between 40 and 100 images would be required for each date. These would most likely be from differing time periods with differing illumination levels and seasonal effects, making combining them into a consistent product very difficult and computationally challenging, not least because of the sheer volume of data involved, The production of multi-temporal archives would be a major task, beyond all but the most specialised of units.
As a result, the major uses of these imagery sources to EAHMI is more likely to be as the source of derived land use products available on the web than as major inputs to any distribution modelling process.
3.3. Radar imagery

Most of the satellite sensors discussed so far are ‘passive’, i.e. they measure solar radiation reflected from the Earth’s surface. Active sensors, in contrast create their own waves and measure the returned signal – the same principal as the radar used by air traffic controllers. Many satellites carry synthetic aperture radar (SAR) sensors to produce such imagery, including Envisat, JERS-1, ERS2, and Radarsat (Table 2 and Appendix), which provide medium resolution imagery, with a definition of 20-30m (Campbell, 2002). 
Figure 10: A JERS1 image of the Philippines, 1996
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Source: Japanese Aerospace Exploration Agency
3.3.1. Advantages, disadvantages and recommendations

The major advantage of these radar sensors is that they can penetrate clouds – and so are potentially particularly useful in high rainfall areas like the Philippines. Furthermore, the active signals can be used to measure characteristics like soil moisture and vegetation structure which are beyond the capabilities of any other satellite sensors. 

SAR imagery is, however, notoriously difficult to process and interpret and the derivation of relevant epidemiological variables is extremely complex and computationally intensive. As with the passive medium resolution imagery, the compilation of consistent multitemporal imagery can be difficult because of the number of images needed, and the generally low repeat frequency. Also, unlike much of the passive imagery, the radar imagery is often very expensive – which precludes the acquisition of multitemporal archives for all but the smallest areas. 
As a result, the use of SAR in epidemiology is relatively unexplored, and little proof yet exists of successful derivation of variables related to disease processes. SAR imagery thus remains very much an unproven resource for epidemiological studies, and the production of seasonal time series of relevant environmental variables would be an expensive, time consuming and complex operation, without guaranteed results.

3.4. Coarse spatial resolution imagery

Coarse spatial resolution satellite sensors are typically classified as those producing imagery at a spatial resolution of greater than 100m. These include the SPOT-4, NOAA, Terra, Aqua, Envisat and Orbview2 satellites, with typical historical spatial resolutions of 1-4 kilometres, now more often 250 – 1000m, and repeat times of a day or less (Table 2 and Appendix). This means that global coverages, each of 300-400 images can be produced and archived daily.
3.4.1. Advantages, disadvantages and recommendations

These satellites carry sensors that record in a comparatively large (and slowly increasing) number of reflectance bands. This allows for the production of a range of climatic and environmental variables – e.g. land surface and air temperature, vapour pressure deficit, and a series of vegetation indices. Many have proven relevant to biological distribution modelling and disease risk modelling (see above).
Some of the coarse resolution image archives were started as early as the late seventies or early eighties (e.g NOAA AVHRR), which therefore provide over 20 years of daily climate measurements for the planet.  The regular and frequent supply of images means that sufficient coverage is available, even in tropical regions, to create cloud-free multitemporal image sequences that adequately capture seasonality, and can provide information describing a single year, a single season for many years, long term averages, or reliable measures of change over a significant period. 
The large geographical areas captured by coarse spatial resolution satellite sensors means that the Philippines can be mapped with few but frequent scenes, to provide a consistent and reliable multi-temporal archive, with smooth transitions between each coverage. As a result, and as summarised in the preceding sections, optical imagery from coarse spatial resolution satellite sensors now has a long history of successful application in epidemiology, and specifically in disease risk mapping and distribution modelling.
Most of the coarse imagery is free, or of very low cost per image. There is, however a significant processing overhead attached to the production of climate and vegetation variables, and interpreting such a rich volume of information can have its own problems. The long history such imagery has, however, resulted in a substantial body of tried and tested processing, quality control, parameter creation algorithms as well as application tools, improvements and refinements.
It is therefore clear that imagery from coarse spatial resolution satellite sensors are best suited to the study of disease epidemiology and risk mapping. This is especially so for the Philippines, where the multispectral, high-repeat, wide-area coverages provide the only feasible approach to obtaining consistent seasonal temporal sequences of epidemiologically relevant variables. 
Of the imagery available, MODIS has the highest specification. It has been producing daily imagery since 2000, at a range of resolutions from 250m to 1000m, and is free to download. There are 36 sensor bands and so the number of climatic and environmental derived products, is substantially wider than the other long term imagery sources. In addition, the number of different algorithms used to produce variables such as land surface temperature (LST) has lead to incomparable results {Kalluri, 1995 #82}. The provision of ready-made, corrected and validated products for MODIS represents a significant advance. 
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Figure 11: MODIS Imagery 

Left:  red, green, blue reflectance channels composite from March 2002. Right: MODIS Middle Infra Red image of the Philippines with sea mask overlaid. Dec 2005 (Black areas were cloud covered during acquisition times). Source: Spatial Ecology and Epidemiology Group, University of Oxford, Unpublished data

Amongst the candidate sensors, the MODIS imagery produced by sensors carried on both the Terra and Aqua satellites is best option in terms of providing predictor variable archives for agricultural and epidemiological distribution modelling in the Philippines. Details of the processing required and variables produced are set out in the following section.
4. Recommendations for the Philippines

The previous sections provide an overview of the methods currently used to map the distributions of livestock and animal disease, and to outline what information is available and what additional data are likely to be required to use these techniques in the Philippines.  This final section summarises what are considered to be the most appropriate choices of methods and provides additional details of the recommended data, and the steps needed to acquire them. 

A fundamental choice is the level of detail that is required for any disease or animal maps that will be produced. This is likely to be a trade-off between the size of the area as a whole (300,000 km2 in this case), the smallest area of interest, the resolution of the available data, and the processing overheads of the different resolutions. In these terms, the alternatives are likely to be 5km, 1km and 500m. Five kilometers is likely to be too coarse, as the smaller islands, and coverage of coastlines of the larger ones would be seriously compromised. Five hundred metres is likely to carry too high a processing overhead in terms of predictor processing and data volumes, especially in the early phases of the EAHM Initiative, though it may be a target to aim for in due coarse. 

The most appropriate resolution is thus considered to be 1 kilometre:- not only does this provide a reasonable level of detail, but also matches the resolution of many of the datasets already available to the Initiative, which means that less data processing and would be needed to produce a standardized archive for subsequent analysis.. 

4.1. Livestock Modelling
The methods used to generate FAO’s Gridded Livestock of the World (FAO in press) database are recommended as the most appropriate way of enhancing the livestock data currently available in the Philippines. Improved agricultural census data, especially if at the Barangay level may, in due course, supersede these indirect assessment methods, by directly providing sufficiently detailed data. Analysis zonations and suitability definitions may have to be tailored according to local conditions and available data. Selected production and yield parameters are potentially useful additional parameters to model, as may be crops (see also below)
It should be remembered that these methods are also applicable for a much larger range of target distributions than just domestic livestock – for example animal reservoir species dogs and other species in relation to rabies, wild birds for avian flu, and potentially many of the vectors of animal and human diseases. 
4.2. Disease Distribution and Risk 
All of the methods discussed here could be found a place within the EAHMI suite of disease risk assessments. Weighting and ranking may be appropriate for first approximation outputs, using incorporating socioeconomic data that is not easily quantifiable. Clustering techniques could also be useful to identify priority areas. Statistical modelling would be appropriate where dis-aggregation of polygon data, and filling of gaps is required to provide a complete disease distribution at a better spatial resolution than the epidemiological data available.  
The final choice of methods will depend heavily on the target disease, quality and quantity of the data for the disease (or vector), the host animal, and the predictor variables available The basic concept of using disease or vector training data together with environmental and other correlates to produce distribution models is applicable to the Philippines situation. 
Logistic regressions of the type used by FAO and others are suitable for the presence of absence of a disease, and either multivariate regression or discriminant analysis would be appropriate for continuous incidence or prevalence data. The regression based methods have the advantage that they are readily available in standard statistical and GIS software, which makes them more suited to the initial phases of a monitoring project as they help to familiarise staff with the data and the methods in a fairly accessible manner, whilst at the same time producing usable outputs. 

There is, however, also a case for evaluating some of the more recently developed methods for presence absence modelling – particularly Maxent, which requires presence only data, if suitable implementation utilities can be found. 

4.3. Disease Projection and Spread. 

Short term projections from static models, based on mutivariate logistic regressions are the  most straightforward technique to implement. These, however tend to be limited to short term projections, and more complex methods would be required to model medium term changes in distributions. The combination of logistic regression and stochastic, distance moderated iterative modelling methods used in Gilbert (2005) are also applicable, but tend to be complex to administer, as the appropriate skills are not widely available. 
Alternative techniques such as the use of cellular automata or network analyses are not yet appropriate as the detailed information that would be needed about the populations at risk, and the likely disease transmission pathways and epidemiological processes and distribution are not yet available within EAHMI archives. 

The selection of the most appropriate methods will depend upon the diseases selected for analyses; the expertise and experience available to implement the techniques; and the timeframe for which outputs are required.

4.4. Predictor Archive
The preceding sections have underlined the need for a wide range of predictor parameters, including both multitemporal remotely sensed data to provide reliable information about seasonally variable climatic parameters, as well as providing the potential for evaluating trends and producing projections.  A series of static estimates of the less volatile or variable parameters are also needed. These are set out in the following paragraphs, together with details of the processing steps needed and estimates of resources required where appropriate. 
4.4.1. MODIS: Products of likely epidemiological relevance

Throughout the brief history of remotely sensed imagery use within epidemiology and public health, the time-consuming process of atmospherically correcting, geo-registering, compositing and processing satellite imagery to produce accurate environmental variables has always been a constraint, not least because most epidemiologists are unfamiliar with such processes. While advanced processing is still required for the production of many reliable products, this is aided by the provision, for each product of a range of quality control flags to provide information on data quality, cloud cover, atmospheric effects and the like (Tatem, 2004). 
MODIS products are available at a range of resolutions, but most comprehensively at a nominal 1 kilometre, at 8 and 16 day intervals, from 2000 to date. The epidemiologically relevant variables routinely provided from the MODIS archive, and freely downloadable, are set out below. 
Normalized Difference Vegetation Index (NDVI)

NDVI has a long history of use in the field of disease risk mapping. It is calculated as a ratio of red to near-infrared reflectance and provides an indication of vegetation abundance and health. Bands 1 (red) and 2 (near infrared) are available for calculation of NDVI as part of product MOD43B4 (http://edcdaac.usgs.gov/modis/mod43b4v4.asp), the 16-day Bidirectional Reflectance Distribution Function (BRDF) )
 adjusted reflectance. Non-BRDF adjusted NDVI is available at 250m and 500m spatial resolutions.

Enhanced Vegetation Index (EVI)

Amongst other problems, NDVI has been shown to saturate at high vegetation levels, such as for the examination of tropical forest imagery, a particular concern for imagery of the Philippines. Therefore, the EVI was designed to overcome NDVI’s limitations and is calculated using red, near-infrared and blue reflectance bands. Product MOD43B4 (http://edcdaac.usgs.gov/modis/mod43b4v4.asp), the BRDF adjusted reflectance provides these bands for calculation of EVI. Non-BRDF adjusted EVI is also available at 250m and 500m spatial resolutions.

Land Surface Temperature (LST)

Products MOD11A2 (Terra) (http://edcdaac.usgs.gov/modis/mod11a2v4.asp) and MYD11A2 (Aqua) (http://edcdaac.usgs.gov/modis/myd11a2v4.asp) provide 8-day 1km LST imagery for both day-time and night-time, using newly designed and validated algorithms.

Middle Infrared Reflectance (MIR)

MODIS Band 7 covers the 2.105-2.155 micrometer MIR part of the spectrum. It is available at 1km spatial resolution as part of the product MOD43B4 (http://edcdaac.usgs.gov/modis/mod43b4v4.asp), the 16-day BRDF-adjusted reflectance. Non-BRDF adjusted MIR is available at 500m spatial resolution.

Evapotranspiration (ET)

The MODIS ET product is currently within its testing phase, but global surfaces have been provided at 5km spatial resolution by researchers at the University of Montana, USA. The algorithm uses a combination of ground meteorological measurements and MODIS-derived EVI and Leaf Area Index (LAI).

Waterbodies (WB)

A bi-product of the BRDF adjustment process is the availability of a 1km spatial resolution surface with each pixel classified as sea, coast, land, inland permanent water or ephemeral water, exhibiting the same gridding as the reflectance data.

Digital Elevation Model (DEM)

Another bi-product of the BRDF adjustment process is the availability of a 1km spatial resolution DEM surface with the same gridding as the reflectance data.

4.4.2. MODIS: data reduction by Temporal Fourier Analysis
Even with a comparatively short timeseries such as that provided by MODIS (from 2000, as compared with from 1982 for AVHRR), there are a lot of files to process (72/year/channel/tile) – approximately 500-1000 per channel for the Philippines. Whilst current computing and the use of macro scripts make the task much less laborious that has been the case in the past, evaluating the data for epidemiological significance remains a daunting proposition given the range of possibilities:  – bi monthly or monthly means or annual means, minima maxima or ranges, or values for a specific time of year.

A widely used way to reduce the number of parameters, whilst retaining the relevant biological and environmental information is to use Fourier Temporal Analysis, converts a time series of any length and period to a fixed number of parameters that describe the levels, seasonality and variability of the whole dataset with just 14 variables. Furthermore the parameters are biologically intuitive, and can be readily interpreted in an epidemiological context. As mentioned in Section 2, they have been successfully used as predictors of animal and disease distributions for some years, and are an essential component of any epidemiological predictor suite. 
The Fourier processing of satellite data, described in detail in Rogers and Williams (1994); Rogers et al. (1996); Rogers (1997); Rogers et al (2006), is quite central to the modelling process since it reveals the all-important seasonal characteristics of the environment.  Each multi-temporal series is reduced to 7 separate data layers: the mean, and the phases and amplitudes of the annual, bi-annual and tri-annual cycles of change.  These are supplemented by three additional variables: the maximum, the minimum, the range, the variance of the original channel data and for each component.
The temporal Fourier processing of multi-temporal data is illustrated in Figure 12. In each case three years of monthly AVHRR data are shown as the black lines (the additional grey line in year 1 is the 3-year average).  The annual, bi-annual and tri-annual Fourier cycles are shown in red, green and blue respectively (notice the second, zero-centered scale for these on the upper graph, right hand axis) and their recombined sum is shown as the violet line super-imposed on the raw data.  These figures illustrate how the Fourier decomposition manages to capture subtle details of the seasonal cycle in both variables.

Figure 12: Fourier curves for a point in West Africa, 
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4.4.3. MODIS: Summary of processing steps required
All MODIS imagery products are available through the EOS Gateway: http://edcimswww.cr.usgs.gov/pub/imswelcome/, or in certain cases by contacting the data product production teams. MODIS imagery is provided in 10 by 10 degree tiles in Sinusoidal projection and four tiles cover the Philippines. Processing steps to produce temporal Fourier analysed products are as follows:

1. Within the EOS gateway interface, define product, temporal sequence and spatial extent of interest (downloading restrictions mean this must be a maximum of one product for one image tile for one 5-year sequence).

2. Place the order through the EOS gateway

3. Upon notification of product production, the specific product is downloaded from an ftp site as a zipped folder of Heirarchical Data Format (HDF) format files.

4. This folder is unpacked and the HDF files are imported into ERDAS Imagine.

5. Within Imagine, reflectance data are converted into products and quality control is applied, before conversion to LAN image format.

6. The HDF files are individually zipped and stored on a server.

7. The LAN files are then stored on a server, and 5-year sequences for specific tiles and products are moved to local machines ready for temporal Fourier processing (TFA).

8. The LAN files are then subject to TFA using QBasic programs written to cope specifically with the novel features of MODIS imagery and its various products. Substantial additional quality control and filtering is applied at this stage – including outlier removal; interpolation from 16 to 5 day interval images to provide an integer number of images within a 365 day year; interpolation to fill gaps in the timeseries imagery caused by for, example, clouds or atmospheric contamination that was insufficiently identified by the quality control flags. 
9. TFA image files are output in Idrisi 32 format and stored on a server. Figure 13 shows a test output image for mean daytime LST in the Horn of Africa.

10. The TFA processed image tiles are then mosaiced to the spatial extent required, and if necessary, reprojected to geographic projection.

Figure 13: Test MODIS LST, Fourier processed mean 
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Source: Spatial Ecology and Epidemiology Group, University of Oxford, Unpublished data

The MODIS products are in a process of continuous development and evolution. As of December 2006, imagery for complete years is available for 2001-2005 inclusive. The processing at source has reached version 4, and work has started on version 5 which will use improved methods of dealing with cloud cover, and other missing data values. Quality control, land sea masking and identification of inland water will have been enhanced. Version 5 will be rolled out over an 18 month period starting in late 2006. 

Though the recommended resolution for version 4 products is currently 1 kilometre, the MODIS products are also available at 250 meter resolution, with the exception of the MIR parameter which is produced at 500m and the LST variables at 1km. There is a case therefore to use the 1km V4 for exploratory modelling and evaluation, perhaps incorporating the data for 2006 when it becomes available (mid 2007), if resources permit. Using the later and more refined version 5 imagery for subsequent analyses would be appropriate once the exploratory phase is complete perhaps converting to 500m resolution if the circumstances warrant the extra resources and processing needed.

Table 3 sets out the days needed to provide Fourier processed archives of the various alternative sets imagery discussed above, given the anticipated state of MODIS processing by the Spatial Ecology and Epidemiology Group at Oxford, in early 2007, and using the equipments and skills it has available.  

Table 3: Processing times required for complete MODIS coverage of the Philippines (days)
	
	Version 4
1km

2001-5
	Version 4
1km

2006
	Version 5
1km

2001-6
	Version 5

250/500m

2001-6

	Order and download raw imagery
	Done
	4
	10
	10

	Adapt processing chain to new imagery
	Done
	1
	4
	10

	Preprocessing and quality control
	5
	6
	10
	10

	Temporal Fourier Analysis
	5
	6
	10
	20

	Mosaicing and error checking
	2
	2
	2
	3

	Documentation  and Archiving
	2
	2
	2
	2

	Total Days
	14
	21
	38
	55


4.4.4. Other Predictor Variables 

The choice of predictor variables needed for distribution and risk modelling other than those derived from remotely sensed products is a pragmatic one – determined largely by what can be obtained in the appropriate format, with the proviso that categorical variables tend to be more difficult to incorporate into modelling procedures than do continuous ones.  Indicators of human population, topography, land use and land cover, soil characteristics, and rainfall should all be acquired, and it is a major advantage that many of these are already held within the EAHMI data archive, as detailed in Appendix Section 4. 
Given the types of disease assigned as priority targets for the Philippines, and the generally humid environment, it may also be prudent to investigate a wider set of hydrological variables – for example:  high resolution rainfall, river flow volumes, and flooding patterns and extent. 

There are also several global datasets which may prove to be useful including those relevant to suitability for livestock mentioned previously: high resolution slope and elevation from the shuttle radar topography mission (SRTM); also nighttime lights and urban extents from NASA, CIESIN, or Landscan; and percentage tree canopy derived from MODIS. 

Finally, the EAHMI data archive holds a rich suite of socioeconomic data – which may be invaluable inputs to disease modelling efforts. To date, little has been attempted in this area, and these data may provide an opportunity to develop novel methods of distribution modelling. 

Most of the EAHMI archives are vector format, or based on administrative unit level information. These will need to be converted to raster format in order to facilitate sample point value extraction. Some of these could be further enhanced using GIS techniques to provide, for example, distance parameters (to roads, rivers, towns, water, coasts) which are sometimes useful indicators of animal or disease distributions.  
The presence of crops is probably the single most important correlate of ruminant livestock distributions, and since it is also allied to people, possibly of monogastrics as well. The compositions of the crops may also reflect livestock husbandry techniques which in turn may affect the susceptibility of the animals to various diseases. It is therefore important that some measure of cropping levels is incorporated into the model predictor data suite. There are a number of possibilities, including planted or harvested area, of individual crop species, all crops, or staples, as well as other potentially valuable indicators such as the amount of double cropping. As with livestock populations, these data are usually available at the level of the administrative unit, and therefore amenable to distribution modelling techniques themselves, and it may well prove desirable to devote some analytical resources to improving the distribution maps of selected cropping indicators. 

A significant benefit of producing crop maps at the same resolution as animal distributions is that the two sets of information, can be used together with human population distributions, to define agricultural systems based on the relative levels of people, crops and animals. These may then be related to potential development interventions, or indeed epidemiological risk zones. 

The diversity of variables held in the EAHMI spatial data archive may also be useful to generate proxies for a number of the potential predictors for which data are rarely possible to obtain – such as the animal movement that may be critically important to the spread of a disease. Indicators of these parameters may be accessible through delineating zones of production or husbandry type which reflect levels of intensification, movements and biocontrol. 
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APPENDICES
6. Terms of Reference

The TOR applicable to the current consultancy are indicated below in bold italic.

Terms of Reference for an International Consultant to Review Remote Sensing Options and Image Processing Requirements for Spatial Analysis of Animal Disease Distribution in the Philippines

As indicated in the project document and inception report, the Philippine Environmental Animal Health Management Initiative (EAHMI) (GCP/PHI/050/ITA) requires a sequential series of highly specialized, international consultancy inputs to: 

1. Review remote sensing options and image processing requirements, and identify the most appropriate form(s) of remotely sensed imagery for spatial analysis of animal disease distribution and risk modelling in the Philippines; 

2. Acquire and process selected imagery, prepare a paper and poster on how the imagery was obtained and processed, and its potential uses for presentation at a remote sensing and geographical information system training workshop in the Philippines;

3. Multivariate spatial analysis of animal disease distribution and risk modelling; and, subject to obtaining meaningful results from the foregoing,

4. Model the potential spread of selected diseases under various scenarios.

Such specialized skills and expertise are not currently available in the Philippines.

Terms of reference for the first two steps of the above sequence are as follows:

Step One

Conduct a desk study of remote sensing options and image processing requirements for the determination of land cover, climatic, seasonality and other environmental variables suitable for spatial analysis of the Philippines, with particular reference to high frequency, moderate resolution imagery, such as MODIS and others. The desk study should include:

· Review of recent publications and study reports relating to spatial analysis of livestock resource distributions and animal disease risk assessments commissioned by FAO AGAH and other agencies; 

· Review and summarize the attributes of various forms of remote sensing, including: variables that can be derived, resolution, frequency, indicative costs and lead times;

· Identify/recommend the most appropriate form(s) of remotely sensed data for spatial/ environmental analysis of disease distribution and risk assessment in the Philippines;

· Provide estimates of image acquisition and processing costs; 

· Prepare a concise report of findings and recommendations for the next step in the sequence of consultancy inputs, to be submitted by the end of January 2007

.

Step Two

Subject to review of recommendations and indicative costs identified in step one, it is anticipated that the consultant would subsequently be commissioned to:

· Acquire and process the recommended imagery in a form suitable for multivariate analysis and for use as thematic data layers in ArcView 9.1/2;

· Prepare a paper and poster on how the imagery was obtained and its potential uses;

· Undertake a two-week GIS/RS capacity building mission to the Philippines;

· Install/transfer imagery/databases to EAMHI hardware at the Bureau of Animal Industry, Quezon City, Metro Manila;

· Familiarize EAHMI staff and partners with imagery/database;

· Present paper on remote sensing and spatial analysis in disease risk assessment at a seminar/workshop to be organized by EAHMI and the Institute of Renewable Natural Resources, College of Forestry and Natural Resources, University of the Philippines at Los Banos, planned for late March 2007;

· Review status of EAHMI’s animal disease and environmental database, identify gaps and discuss potential enhancements;

· Prepare a comprehensive report of work undertaken, findings and recommendations for steps three and four, by the end of April 2007.

Time Frame

Step One to be completed by end of January 2007

Step Two to be completed by end of April 2007

7. Further Satellite Details

7.1. High Resolution

Ikonos

The Ikonos spacecraft was launched in September 1999 and carries a panchromatic (1m spatial resolution) and a multi-spectral sensor (4m spatial resolution, red, blue, green, near-infrared) that produces imagery with a repeat coverage of 1.5 to 3 days off-nadir, on request (Dial et al., 2003).  Although fantastically detailed, the current significant expense of these data will likely limit their wide application in epidemiology.

Quickbird

QuickBird launched in October 2001 and is the highest resolution commercial satellite in operation, carrying a 61cm spatial resolution panchromatic sensor and a 2.5 metre spatial resolution multispectral (red, blue, green, near-infrared) sensor. 

Orbview

Launched in June 2003, OrbView 3's imaging instrument provides 1m panchromatic imagery and 4m multispectral (red, blue, green, near-infrared) imagery with a swath width of 8 km as well as 200 channel hyperspectral imagery with a swath width of 5 km. 

SPOT 5

Launched in May 2002, the SPOT-5 satellite carries two new HRG instruments, producing 2.5-5m panchromatic imagery and 10m multispectral imagery covering an area of 60 by 60 kilometres. 

7.2. Medium Resolution

SPOT HRV

The French Satellite Pour l’Observation de la Terre (SPOT) programme began in 1986 with the launch of SPOT-1, which carried the High Resolution Visible (HRV) payload. The SPOT-HRV achieves a slightly higher spatial resolution (20m), but with just four spectral channels. SPOT-4, carries the High Resolution Visible and Infrared (HRVIR) sensor, which is similar to the HRV, except that HRVIR has an additional short wave infrared (SWIR) band, and the wavelength bandwidth of the panchromatic mode for HRVIR is narrower than that for HRV. 

Landsat MSS/TM/ETM

The Landsat programme has generated a continuous supply of high resolution imagery for the entire globe since the early 1970s, from the first Multispectral Scanner (MSS) aboard Landsat-1 to the latest Enhanced Thematic Mapper (ETM+) on board Landsat-7, with its spatial resolution of 15/30/60m dependent upon spectral band {Mika, 1997}. During this time, there has been a substantial evolution in the quality of the radiometers {Mika, 1997}, their calibration {Chander, 2004; Thome, } and the development of multi-spectral data analysis techniques developed to process captured data {Landgrebe, 1997 }.

ASTER

ASTER is an alternative data source for studies that have traditionally used SPOT-HRV or Landsat TM sensors. The spatial resolution of ASTER varies with wavelength, yielding 15, 30 and 90 m resolutions at visible-near infrared (VNIR), short wave infrared (SWIR) and thermal infrared (TIR), respectively (Yamaguchi et al., 1998), and the images may prove a powerful tool for studying local disease processes (Tatem et al., 2004).

7.3. Radar

Radarsat-2

Launched in 1995, RADARSAT-1 is Canada's commercial SAR satellite, which includes 25m spatial resolution imaging, flexibility in selection of polarization and left and right-looking imaging options.

ERS-2

ERS-2 was launched on April 21, 1995 and carries a synthetic aperture radar. It has a repeat cycle of 35 days, but has been operating without gyroscopes since February 2001, resulting in some degradation of the data provided by the instruments. The successor to ERS-2 is Envisat.

Envisat ASAR

Launched in March 2002, Envisat carries the Advanced SAR (ASAR) which produces imagery of swath widths over up to 100km wide at 30m spatial resolution .

JERS-1 SAR

The Japanese Earth Resources Satellite (JERS) carries a SAR sensor that produces imagery with a swath width of 75km at 18m spatial resolution.

7.4. Coarse Resolution

AVHRR

The Advanced Very High Resolution Radiometer (AVHRR) is a space-borne sensor embarked on the National Oceanic and Atmospheric Administration (NOAA) family of polar orbiting platforms. AVHRR instruments measure the reflectance of the Earth in 5 relatively wide visible, near-infrared and thermal infrared spectral bands. The primary purpose of these instruments is to monitor clouds and to measure the thermal emission (cooling) of the Earth. They have, however, proven useful for a number of other applications, and represent the sensor with the most successful application to disease risk mapping. With over 20 years of data and a range of climatic and environmental variables able to be derived, AVHRR imagery has proved particularly useful in the study, surveillance and prediction of vector borne. The main difficulty associated with use of this imagery is now dealing with the many limitations of these instruments, especially in the early acquisition period (sensor calibration, orbital drift, limited spectral and directional sampling, etc). Additionally, with just 5 spectral bands, there are limits to the number and accuracy of variables obtainable, compared to a sensor such as MODIS. To aid continuity, a new AVHRR instrument flies on the recently launched METOP satellite.

MERIS on Envisat

MEdium Resolution Imaging Spectrometer (MERIS) is on-board the European Space Agency (ESA)'s Envisat platform. These spectrometers produce data in 15 spectral bands at a maximum spatial resolution of 300m. With a swath width of 1150 km it can collect data for the entire planet every 3 days. The primary objective of MERIS is to observe the color of the ocean, but it has also been used to monitor the evolution of terrestrial environments, and therefore may find application in disease risk mapping. However, the difficulty in obtaining imagery and deriving epidemiological variables, combined with its apparent inferiority in terms of products, availability and spectral bands to MODIS, make MERIS relatively unattractive for disease risk mapping.

SPOT Vegetation

The SPOT 4 satellite carries on-board a low-resolution wide-coverage instrument specifically for monitoring the continental biosphere and to monitor crops. The VEGETATION instrument provides global coverage on an almost daily basis at a resolution of 1 kilometre with a swath of 2250 km. The VEGETATION instrument does offer high quality vegetation indices, but with just 4 spectral bands, few other epidemiologically relevant variables can be derived.

SeaWifs

SeaWiFS stands for Sea-viewing Wide Field-of-view Sensor. It is the only scientific instrument on GeoEye's OrbView-2 satellite. The sensor resolution is 1.1 km and records information in 8 optical bands. Though vegetation indices can be derived, its spectral band focus on sea surface processes means that few other epidemiologically relevant variables can be derived.

Terra/Aqua MODIS

The Terra (EOS AM-1) and Aqua (EOS PM-2) satellites, launched in December 1999 and May 2002 respectively, are part of NASA’s Earth Observing System (Parkinson, 2003). A range of onboard sensors capture a variety of image types, but most relevant in this context are the MODerate Resolution Imaging Spectroradiometer (MODIS). MODIS is particularly attractive for epidemiological applications due to: (i) a better spectral resolution than AVHRR, with 36 spectral channels with smaller waveband ranges and significantly improved signal-to-noise ratios (Justice et al., 2002), (ii) a one to two-day repeat time temporal resolution at significantly higher spatial resolution (250 x 250 to 1000 x 1000 m depending on the channel) than AVHRR (Townshend and Justice, 2002), and (iii) fully processed and quality assessed data products, giving unparalleled, rapid access to contemporary and reliable data on large-area ecosystem processes. MODIS is also potentially attractive to the public health community thanks to the availability of its products at no charge to users, and its longer mission lifespan (Tatem et al., 2004). A drawback of MODIS data, when compared to AVHRR, is the considerably greater computing resources needed to cope with the larger data volumes of some of its products. These constraints are likely to diminish rapidly with the exponential increases in computer power and storage capacities, but these spatial resolutions at the global scale will still present a significant challenge to the majority of users.

Spectral bands within the MODIS 36 band array are broadly similar to those of AVHRR, which may permit temporal continuity of data sets and thus the potential for extending the AVHRR time series (Friedl et al., 2002), providing funding for the Terra and Aqua satellites continues (a significant consideration given the uncertainty of most USA-based earth observation systems at the present time). The planned Visible/Infrared Imager/Radiometer Suite (VIIRS) with 650m spatial resolution in 21 spectral bands should enable longerterm continuity with MODIS, should Terra and Aqua be phased out. 

8. Details of Available Methods for Species Mapping

8.1. Techniques

· Linear and non-linear discriminant analysis

Discriminant analysis is one of the techniques that assume a multivariate normal distribution both of predictor datasets and also of the response variable, which is an estimate of the probability of species presence or absence. Briefly, the areas of presence of a species are assumed to experience a range of conditions described by a multivariate normal distribution, and the areas of absence are assumed to be described also by a multivariate normal distribution with a different multivariate mean or ‘‘centroid’’ and (usually) different co-variances of the same set of predictor variables. These two distributions therefore exist in multivariate environmental space and together define a multivariate surface on which it is possible to locate the environmental conditions of any point on a map, and to calculate the probability with which this point ‘‘belongs’’ to the cluster defining presence or, alternatively, to the cluster defining absence. These probabilities are more correctly described as such than is the case for logistic regression probabilities, since they assume some underlying normal frequency distribution, although a normalization step is usually required to calculate them (thus they are linear functions of the exact probabilities rather than the exact probabilities themselves). The use of observed or other more appropriate prior probabilities produces (Bayesian) maximum likelihood output predictions in such discriminant analysis models (Rogers, 2006).

· K-nearest neighbour

In pattern recognition, the k-nearest neighbour algorithm (k-NN) is a method for classifying objects based on closest training examples in the feature space (Dasarthy, 1991). The training examples are mapped into multidimensional feature space. The space is partitioned into regions by class labels of the training samples. A point in the space is assigned to the class c if it is the most frequent class label among the k nearest training samples. Usually Euclidean distance is used. The training phase of the algorithm consists only of storing the feature vectors and class labels of the training samples. In the actual classification phase, the same features as before are computed for the test sample (whose class is not known). Distances from the new vector to all stored vectors are computed and k closest samples are selected. The new point is predicted to belong to the most numerous class within the set.

The best choice of k depends upon the data; generally, larger values of k reduce the effect of noise on the classification, but make boundaries between classes less distinct. A good k can be selected by parameter optimization using, for example, cross-validation. The special case where the class is predicted to be the class of the closest training sample (i.e. when k = 1) is called the nearest neighbour algorithm.

The accuracy of the k-NN algorithm can be severely degraded by the presence of noisy or irrelevant features, or if the features scales are not consistent with their relevance. Much research effort has been placed into selecting or scaling features to improve classification. A particularly popular approach is the use of evolutionary algorithms to optimize feature scaling. Another popular approach is to scale features by the mutual information of the training data with the training classes.

The algorithm is easy to implement, but it is computationally intensive, especially when the size of the training set grows. Many optimizations have been proposed over the years; these generally seek to reduce the number of distances actually computed. Some optimizations involve partitioning the feature space, and only computing distances within specific nearby volumes. Several different types of nearest neighbour finding algorithms include:Linear scan, Kd-trees, Balltrees, Metric trees, Locality-sensitive hashing (LSH). 

The nearest neighbor algorithm has some strong consistency results. As the amount of data approaches infinity, the algorithm is guaranteed to yield an error rate no worse than twice the Bayes error rate (the minimum achievable error rate given the distribution of the data). k-nearest neighbor is guaranteed to approach the Bayes error rate, for some value of k (where k increases as a function of the number of data points).

· Maximum entropy

Maximum entropy modelling is a framework for integrating information from many heterogeneous information sources for classification.  The data for a classification problem is described as a (potentially large) number of features.  These features can be quite complex and allow the experimenter to make use of prior knowledge about what types of informations are expected to be important for classification. Each feature corresponds to a constraint on the model.  The maximum entropy model is then computed, the model with the maximum entropy of all the models that satisfy the constraints.  The idea is that it should not go beyond the data.  If a model with less entropy is chosen, it would add `information' constraints to the model that are not justified by the empirical evidence available to us. Choosing the maximum entropy model is motivated by the desire to preserve as much uncertainty as possible (Phillips, 2006).

· Logistic regression

Logistic regression is a statistical regression model for binary dependent variables. It can be considered as a generalized linear model that utilizes the logit as its link function, and has binomially distributed errors.

· Generalised linear models

In statistics the generalized linear model (GLM) generalizes the ordinary least squares regression. Generalized Linear Models are an extension of the linear modelling process that allows models to be fit to data that follow probability distributions other than the Normal distribution, such as the Poisson, Binomial, Multinomial, and etc. Generalized Linear Models also relax the requirement of equality or constancy of variances that is required for hypothesis tests in traditional linear models.

· Generalised additive models

The generalized additive model (GAM) is a statistical model blending properties of multiple regression (a special case of general linear model) with additive models. The priority of GAMs is predictive ability, perhaps at the expense of interpretability of results. Overfitting can be a problem with GAMs. The number of smoothing parameters can be specified, and this number should be reasonably small, certainly well under the degrees of freedom offered by the data. Cross-validation can be used to detect and/or reduce overfitting problems with GAMs (or other statistical methods). Other models such as GLMs may be preferable to GAMs unless GAMs improve predictive ability substantially for the application in question.

· Multivariate adaptive regression splines

Adaptive regression splines are a kind of additive models that can be seen as a generalisation of regression trees introduced to overcome some of their limitations. Multivariate Adaptive Regression Splines (MARS) is a method for flexible modelling of high dimensional data. The model takes the form of an expansion in product spline basis functions, where the number of basis functions as well as the parameters associated with each one (product degree and knot locations) are automatically determined by the data. This procedure is motivated by recursive partitioning (e.g. CART) and shares its ability to capture high order interactions. However, it has more power and flexibility to model relationships that are nearly additive or involve interactions in at most a few variables, and produces continuous models with continuous derivatives. In addition, the model can be represented in a form that separately identifies the additive contributions and those associated with different multivariable interactions.

· Gower metric – multivariate distance

Domain Modelling Domain uses a similarity measure by transforming the known occurences into a environmental space and computing the minimum distance in environmental space from any cell to a known presence of the species. The result of this is a surface which is ranked for likelihood of having a species occur. At its very simplest, this model generates maps of similarity or distance.  For example to predict the potential distribution of a particular taxon, DOMAIN maps those regions which are most similar to areas where the taxon is known to occur. The measure of similarity used in DOMAIN is based on the Gower metric.  For any location in the mapping area, the values in the layer files define an environmental coordinate.  For example if 3 layers are open containing rainfall, vegetation type and elevation, the environmental coordinate for any location is the set of three cell values from the three layers at that point.  The Gower metric defines a means of computing the distance between any two such environmental coordinates. 

The DOMAIN algorithm creates a new map layer and assigns each cell in the new layer the Gower distance between that cell and the closest point in the training set.  If averaging is enabled the value stored is the average of the n nearest cells.  Generally n is left as 1.  Larger values are useful in reducing the effect of outliers in the training points. 

The application of DOMAIN is not limited to mapping potential distribution of taxa.  The problem of similarity mapping arises in other areas.  For example it may be useful to map the regions which are least similar to this set of survey sites when selecting new site locations or examing the adequacy of a sampling strategy. 
· Ecological niche factor analysis (ENFA)
ENFA is designed to compute the factors (like the Principal Components Analysis) that explain the major part of the ecological distribution of the species. Like in the PCA, the extracted factors are totally (by construction) uncorrelated but in this case they have biological signification: the first factor is the marginality factor, which describes how far the species optimum is from the mean habitat in the study area. The specialisation factors are sorted by decreasing amount of explained variance; they describe how specialised the species is by reference to the available range of habitat in the study area. Therefore, only a few of the first factors explain the major part of the whole information.

· Envelope models (BIOCLIM)

The idea of BIOCLIM is to find a single rule that identifies all areas with a similar climate to the locations of the species. To do this, the basic BIOCLIM algorithm finds the climatic range of the points for each climatic variable. The Climatic Envelope Model is a GARP-simulation of the bounding box, climate envelope method as used in BIOCLIM. It uses the concept of a bounding box to enclose the data points formed from a number of climate variables derived from climate surfaces. It differs from the BIOCLIM program in the rule-based algorithm it uses to derive the predictions. The rules used, consisting of ranges of climate for all climate variables, then enclose all points, within statistically defined limits. Central assumptions are used in Climate Envelope Model are: the distribution of the species is determined by climate, the distribution of the climatic variables is standard normal, and all variables with restricted ranges influence the species of interest. With all modelling systems if the assumptions of a method are not satisfied then the results will be unreliable, or simply quite wrong. While Bioclim has been shown to give satisfactory results for many species, there was a percieved need to develop a system with less restrictive assumptions. Thus GARP (Genetic Algorithm for Rule-set Production) was developed (Stockwell, 1999).

· Genetic algorithm for rule-set prediction (GARP) 

A genetic algorithm (GA) is a search technique used in computer science to find approximate solutions to optimization and search problems (Stockwell, 1999). Specifically it falls into the category of global search heuristics and is therefore generally an incomplete search. Genetic algorithms are a particular class of evolutionary algorithms that use techniques inspired by evolutionary biology such as inheritance, mutation, selection, and crossover (also called recombination). Genetic algorithms are typically implemented as a computer simulation in which a population of abstract representations (called chromosomes) of candidate solutions (called individuals) to an optimization problem evolves toward better solutions. Traditionally, solutions are represented in binary as strings of 0s and 1s, but different encodings are also possible. The evolution starts from a population of completely random individuals and happens in generations. In each generation, the fitness of the whole population is evaluated, multiple individuals are stochastically selected from the current population (based on their fitness), and modified (mutated or recombined) to form a new population. The new population is then used in the next iteration of the algorithm.

· Classification and regression trees

A predictive model; that is, a mapping of observations about an item to conclusions about the item's target value. Each interior node corresponds to a variable; an arc to a child represents a possible value of that variable. A leaf represents the predicted value of target variable given the values of the variables represented by the path from the root. Decision tree has three other names: Classification tree analysis is a term used when the predicted outcome is the class to which the data belongs. Regression tree analysis is a term used when the predicted outcome can be considered a real number (e.g. the price of a house, or a patient’s length of stay in a hospital). CART analysis is a term used to refer to both of the above procedures. The name CART is an acronym from the words Classification And Regression Trees (Breiman, 1984).

· Feedforward multilayer backpropagation neural networks

An artificial neural network (ANN) or commonly just neural network (NN) is an interconnected group of artificial neurons that uses a mathematical or computational model for information processing based on a connectionist approach to computation (Bishop, 1996). In most cases an ANN is an adaptive system that changes its structure based on external or internal information that flows through the network. In more practical terms neural networks are non-linear statistical data modelling tools. They can be used to model complex relationships between inputs and outputs or to find patterns in data.

· Pseudo-supervised network/fuzzy ARTMAP

Adaptive Resonance Theory (ART) is a neural network architecture. The basic ART system is an unsupervised learning model. It typically consists of a comparison field and a recognition field composed of neurons, a vigilance parameter, and a reset module (Bishop, 1996). The vigilance parameter has considerable influence on the system: higher vigilance produces highly detailed memories (many, fine-grained categories), while lower vigilance results in more general memories (fewer, more-general categories). The comparison field takes an input vector (a one-dimensional array of values) and transfers it to its best match in the recognition field. Its best match is the single neuron whose set of weights (weight vector) most closely matches the input vector. Each recognition field neuron outputs a negative signal (proportional to that neuron’s quality of match to the input vector) to each of the other recognition field neurons and inhibits their output accordingly. In this way the recognition field exhibits lateral inhibition, allowing each neuron in it to represent a category to which input vectors are classified. After the input vector is classified, the reset module compares the strength of the recognition match to the vigilance parameter. If the vigilance threshold is met, training commences. Otherwise, if the match level does not meet the vigilance parameter, the firing recognition neuron is inhibited until a new input vector is applied; training commences only upon completion of a search procedure. In the search procedure, recognition neurons are disabled one by one by the reset function until the vigilance parameter is satisfied by a recognition match. If no committed recognition neuron’s match meets the vigilance threshold, then an uncommitted neuron is committed and adjusted towards matching the input vector.

· Simple empirical rule-based model (MARA – IDRISI macro file)

MARA: Clearly there are no distinct boundaries dividing malarious from non-malarious regions. Both long-term and annual variation in climate will shift the limits of distribution over time. In addition, climatic factors occur as spatial gradients, and thus the occurrence of transmission cannot be defined by using clear cut-offs. Fuzzy logic can solve the problem of using distinct cut-offs, by allowing us to describe the situation in terms of partial truth, or the extent to which a statement is true. It can be used to describe how suitable prevailing climate is for malaria transmission, and how certain we are that transmission can take place. Going by what is known about the relationships one can set limits, above which we are sure that transmission can take place, and another limit, below which transmission is more or less impossible. In this way one is expressing the suitability of climate for malaria transmission, and defining the areas where malaria transmission can be expected to occur. 

Parasite development ceases at 16°C, but transmission below 18°C is unlikely because very few adult mosquitoes survive the 56 days required for sporogeny at that temperature, and because mosquito abundance is limited by long larval duration. At 22°C sporogeny is completed in less than three weeks and mosquito survival is certainly great enough (15%) for the transmission cycle to be completed. Thus temperature below 18°C was considered unsuitable, and above 22°C, suitable for stable transmission. The upper limit of temperature suitability is determined by vector survival, since sporogeny takes less than a week. Temperatures of above 32°C have been reported to cause high vector population turnover, weak individuals and high mortality, and thermal death occurs at 40°C. In terms of rainfall, 80mm per month was considered suitable, 0mm unsuitable. 

The climate data maps were assigned new, fuzzy, values, based on their suitability for sporogonic development and the occurrence of rainfall, which indicate how suitable (on a scale of 0 to 1) the climate is. Since both temperature and rainfall have to be favourable at the same time of the year to allow transmission, the suitability maps were combined to calculate which of the two was more limiting each month. Furthermore, suitable conditions have to continue for a certain time period, long enough for the transmission cycle to be completed. In the hot north African countries the rainfall season only needs to last for three months for mosquito populations to grow enough to permit transmission, while in the rest of Africa the required period was set at five months. Finally, all areas with frost in winter were masked from the distribution model because frost eliminates mosquitoes populations. The details are given in Craig et. al. (1999). Because the climate data are a long-term mean, one is calculating climatic suitability in the average year, and thus the suitability for stable, or annual, transmission.

· Geostatistical models

Identify and account for the underlying spatial process using geostatistics. Unlike the more traditional nearest neighbor (lattice-based) approaches that rely on an arbitrarily defined neighborhood (most often the first-order adjacent neighbors), geostatistics can empirically model the relationship between responses (in this case rates) and a full range of distances, eg Kriging-based.

· Idrisi Species Modeller

The Idrisi Species Modeller Utility, available in the Andes version, encompasses a fairly wide range of tools designed to delineate species’ ranges and distributions by extract the values of environmental parameters for training data points for which a species’ presence (or absence) is known, and then identifying areas with similar characteristics.  
The underlying principle of the refinement process is to uncover the common environmental logic of the areas delineated by the range polygon. It does this by creating clusters of environmental conditions according to a set of environmental variables that the user believes can characterize the niche of the species. It then compares these clusters with the range polygon to determine the proportional inclusion of clusters within the range polygon. Clusters that fall wholly or largely within the polygon are assumed to describe essential components of that niche. Those that fall mostly or wholly outside are assumed to be unlikely components. The polygon is thus refined by removing areas that fall below a designated confidence. In addition, another option is provided to simply output a confidence map that can be used in conjunction with the original range polygon by the Weighted Mahalanobis Typicality procedure in the Habitat Suitability / Species Distribution panel. 

The major advantage of this Utility is that it provides a rapid suite of exploratory techniques for assessing likely distributions, and can be used in screening for useful clustering or predictor parameters. The outputs can then be used to direct more sophisticated procedures should more refined or better customised methods be subsequently required. 
8.2. Model Selection

The availability of data to undertake these accuracy assessments depends on modelling choices made, and options exist:

(i) Maintain a source of data specifically for testing, which is not included in any modelling. This is a simple option which is not recommended as such data should ideally be used in model construction to obtain the best model possible.

(ii) Construct a model using a randomly selected sample of data and use the remaining data for accuracy assessment of the model. Repeat this procedure many times both with one single model and with differing models to assess the best model given the available data. Though time and computationally intensive, this approach provides a much more effective method to the assessment of model choice and predictive accuracy.

Table 4 provides details on the various metrics available for both model selection and accuracy assessment of predicted disease/vector maps.

· Akaike’s Information Criterion
The Akaike information criterion (AIC) is a measure of the goodness of fit of an estimated statistical model. It is grounded in the concept of entropy. The AIC is an operational way of trading off the complexity of an estimated model against how well the model fits the data (Rogers, 2006).

· Cohen’s Kappa

Cohen's kappa coefficient is a statistical measure of inter-rater reliability. It is generally thought to be a more robust measure than simple percent agreement calculation since kappa takes into account the agreement occurring by chance. Cohen's kappa measures the agreement between two raters who each classify N items into C mutually exclusive categories.

Table 4 Various accuracy metrics applicable to disease or vector distribution modelling (Adapted from Rogers 2006)
	Accuracy Metric
	Range of values
	Description
	Advantages
	Disadvantages



	% Correct
	0 – 100%
	Overall percentage accuracy, all categories combined.
	Simple and easy to calculate.
	Presence and absence sites given equal weight.  Metric usually affected by prevalence.

	% False positives
	0 – 100%
	% of total training set sample wrongly predicted as ‘presence’.
	Simple and easy to calculate.
	Should be considered with its complement – false negatives.

	% False negatives
	0 – 100%
	% of total training set sample wrongly predicted as ‘absence’.
	Simple and easy to calculate.
	Should be considered with its complement – false positives.

	Sensitivity
	0 - 1
	Ability correctly to identify positives.
	Derived from diagnostics.  Useful measure of positive test accuracy.
	Concentrates on positives only.  Should be considered with its complement – specificity.

	Specificity
	0 - 1
	Ability correctly to identify negatives.
	Derived from diagnostics.  Useful measure of negative test accuracy.
	Concentrates on negatives only.  Should be considered with its complement – sensitivity.

	Producer’s Accuracy
	0 - 100%
	Ability to predict correctly the training set data.
	A guide to the modeller to identify where current models are wrong.
	Not particularly useful to users.

	Consumer’s Accuracy
	0 - 100%
	Accuracy of model predictions.
	A guide to the user to indicate the probability with which each model prediction is correct.
	An important metric for operational use, but not particularly useful to the modeller in identifying model errors.

	kappa
	-1 - +1
	Index of Agreement for positive and negative samples combined.
	Adjusts for chance model agreement with training set data (for which kappa = 0).  Applicable to multiple categories of presence/absence or abundance.
	Sensitive to overall prevalence at high and low prevalence levels.

	AUC
	0 – +1
	AUC is the Area under the Curve of a plot of Sensitivity (y-axis) against (1-Specificity) (x-axis), sometimes called the Receiver Operating Characteristics (ROC) plot.
	Effectively combines sensitivity and specificity to assess model accuracy. Commonly used in logistic regression analyses where probability thresholds to achieve best fit (for presence/absence) are often NOT 0.5. Less affected than kappa by high/low overall prevalence.
	Rather more time consuming to calculate than other methods, and more difficult to interpret.  Only works for binary (presence/absence) situations.

	AIC
	0 - (
	AIC is Akaike’s Information Criterion used in information-theoretic models
	Estimates the difference between a model’s performance and some unknown, ultimate truth.  Models with lower AICs are better than those with higher AICs.
	AIC is used to compare models on an arbitrary scale.  Absolute and relative differences between models are more informative, and can determine which models to drop from a candidate set of ‘possible’ models.


9. Data Available in Philippines

The following Tables detail the GIS data held within the EAHMI Archive as of December 2006. There are a number of known issues as follows: the Barangay boundaries are not reliable; there is a known miss-match between national boundary files and satellite imagery which is being investigated and advice sought from National Mapping and Resource Information Authority (NAMRIA); and existing animal disease records are not comprehensive and are being reviewed, with objective of compiling comprehensive database of all records of major diseases from January 2001 to December 2005 at least to municipal and hopefully Barangay level by mid 2007.
Table 5: Summary of Data in EAHMI Data Archive: GIS Boundaries, Infrastructure, Population
	Data Type
	File Types
	Admin Level I (Region)
	Admin Level II

(Province)
	Admin Level III

(Municipal)
	Admin Level IV

(Baranagay)
	Source

	Boundaries and Infrastructure
	
	
	
	
	
	

	Administrative boundaries
	dbf prj shp shx 
	
	
	
	
	NAMRIA/BAR CD-ROM

	Administrative boundaries
	dbf prj shp shx
	
	
	
	
	NSO Datos CD-ROM

	Airports
	dbf shp sbn sbx shx
	
	
	
	
	BAR CD

	Built up areas
	dbf shp sbn sbx shx
	
	
	
	
	BAR CD-ROM

	Coastline 
	dbf shp sbn sbx shx
	
	
	
	
	BAR CD-ROM

	Economic growth centers
	dbf shp sbn sbx shx
	
	
	
	
	BAR CD-ROM

	Economic growth corridors
	dbf shp sbn sbx shx
	
	
	
	
	BAR CD-ROM

	Protected areas
	dbf shp sbn sbx shx
	
	
	
	
	BAR CD-ROM

	Railways
	dbf prj shp shx
	
	
	
	
	BAR CD-ROM

	Roads
	dbf prj shp shx 
	
	
	
	
	BAR CD-ROM

	Seaports
	dbf shp sbn sbx shx
	
	
	
	
	BAR CD

	Human Population: 1980, 1990, 2000
	dbf shp sbn sbx shx
	
	
	
	
	NSO Datos CD-ROM

	Tourism development
	dbf shp sbn sbx shx
	
	
	
	
	BAR CD-ROM


Table 6: Summary of Data in EAHMI Data Archive: Natural Environment

	Data Type
	File Types
	Admin Level I (Region)
	Admin Level II

(Province)
	Admin Level III

(Municipal)
	Admin Level IV

(Baranagay)
	Source

	
	
	
	
	
	
	

	Natural Environment
	
	
	
	
	
	

	Agro-ecological zones
	dbf shp sbn sbx shx
	
	
	
	
	BAR CD-ROM

	Contour line
	dbf shp sbn sbx shx
	
	
	
	
	BAR CD-ROM

	Critical watersheds
	dbf shp sbn sbx shx
	
	
	
	
	BAR CD-ROM

	Fishponds and salt beds
	dbf shp sbn sbx shx
	
	
	
	
	BAR CD-ROM

	Flood and storm surge prone areas
	dbf shp sbn sbx shx
	
	
	
	
	BAR CD-ROM

	Forest cover 1987 and 1999
	dbf shp sbn sbx shx
	
	
	
	
	BAR CD-ROM

	Geology
	dbf shp sbn sbx shx
	
	
	
	
	BAR CD-ROM

	Ground water
	dbf shp sbn sbx shx
	
	
	
	
	BAR CD-ROM

	Land classification
	dbf shp sbn sbx shx
	
	
	
	
	BAR CD-ROM

	Land cover 2003
	dbf shp sbn sbx shx
	
	
	
	
	BAR CD-ROM

	Rainfall (weekly & monthly)
	dbf shp sbn sbx shx
	
	
	
	
	NSO Datos CD-ROM

	Assorted other meteorological data
	xls
	
	
	
	
	BAR CD-ROM

	Rivers
	dbf prj shp shx 
	
	
	
	
	BAR CD-ROM

	Slope
	dbf shp sbn sbx shx
	
	
	
	
	BAR

	Soil erosion
	dbf shp sbn sbx shx
	
	
	
	
	BAR CD-ROM

	Soil texture
	dbf shp sbn sbx shx
	
	
	
	
	BAR CD-ROM

	Soils types 
	dbf shp sbn sbx shx
	
	
	
	
	BAR CD-ROM

	Topography/DEM (dem_utm_92)
	adf
	
	
	
	
	BAR CD-ROM

	Tropical cyclone frequency
	dbf shp sbn sbx shx
	
	
	
	
	BAR CD-ROM

	Water bodies
	dbf shp sbn sbx shx
	
	
	
	
	BAR CD-ROM

	Watersheds
	dbf shp sbn sbx shx
	
	
	
	
	BAR CD-ROM


Table 7: Summary of Data in EAHMI Data Archive: Agriculture

	Data Type
	File Types
	Admin Level I (Region)
	Admin Level II

(Province)
	Admin Level III

(Municipal)
	Admin Level IV

(Baranagay)
	Source

	Expanded rice and crops
	dbf shp sbn sbx shx
	
	
	
	
	BAR CD-ROM

	Rice cropping systems
	dbf shp sbn sbx shx
	
	
	
	
	BAR CD-ROM

	Rice toposequence
	dbf shp sbn sbx shx
	
	
	
	
	BAR CD-ROM

	Rice watershed
	dbf shp sbn sbx shx
	
	
	
	
	BAR CD-ROM

	Cropped areas of various temporary and permanent crops
	xls dbf
	
	
	
	
	NSO 2002 Census of Agriculture CD-ROM

	Livestock
	
	
	
	
	
	

	Carabao (buffalo), cattle, goats, hogs (pigs) (2001-2006)
	xls dbf
	
	
	
	
	BAS (2006)

	Carabao (buffalo), cattle, goats, hogs (pigs), horses (2001-2006)
	xls dbf
	
	
	
	
	NSO 2002 Census of Agriculture CD-ROM

	Poultry
	
	
	
	
	
	

	Indigenous chickens, broilers, layers, ducks (2001-2006)
	xls dbf
	
	
	
	
	BAS (2006)

	Indigenous chickens, broilers, layers, game birds, hybrids, ducks, quails (2002)
	xls dbf
	
	
	
	
	NSO 2002 Census of Agriculture CD-ROM

	New poultry survey data due soon (2006)
	
	
	
	
	?
	BAI/BAS (2006)

	Animal Diseases
	
	
	
	
	
	

	Anthrax
	xls dbf
	
	
	
	
	BAI Annual Reports

	Blackleg
	xls dbf
	
	
	
	
	BAI Annual Reports

	Fasciola/liverfluke
	xls dbf
	
	
	
	
	BAI Annual Reports

	Foot and mouth disease
	xls dbf
	
	
	
	
	BAI Annual Reports

	Hemorrhagic septicemia
	xls dbf
	
	
	
	
	BAI Annual Reports

	Hog cholera
	xls dbf
	
	
	
	
	BAI Annual Reports

	Newcastle disease
	xls dbf
	
	
	
	
	BAI Annual Reports

	Rabies (monthly)
	xls dbf
	
	
	
	?
	BAI Annual Reports

	Surra (Trypanosoma evansi)
	xls dbf
	
	
	
	
	BAI Annual Reports


Table 8: Summary of Data in EAHMI Data Archive: Natural Environment

	Data Type
	File Types
	Admin Level I (Region)
	Admin Level II

(Province)
	Admin Level III

(Municipal)
	Admin Level IV

(Baranagay)
	Source

	Socio-Economic Indicators 
	
	
	
	
	
	

	Human population, population density, land area, n municipalities, n barangays
	xls
	
	
	
	
	NSCB (2006) CD-ROM

	Human development index
	xls
	
	
	
	
	NSCB (2006) CD-ROM

	Financial resources and allocations
	xls
	
	
	
	
	NSCB (2006) CD-ROM

	Poverty:
	xls
	
	
	
	
	NSCB (2006) CD-ROM

	Farm income and expenditure
	xls
	
	
	
	
	NSCB (2006) CD-ROM

	Labor and employment
	xls
	
	
	
	
	NSCB (2006) CD-ROM

	Consumer price index, inflation rate, purchasing power
	xls
	
	
	
	
	NSCB (2006) CD-ROM

	Crop production: rice, corn, bananas, mangos, coconuts
	xls
	
	
	
	
	NSCB (2006) CD-ROM

	Livestock inventories (backyard and commercial): native chickens, broilers, layers, ducks, cattle, carabao, goats, hogs 9Pigs)
	xls
	
	
	
	
	NSCB (2006) CD-ROM

	Fish production: aquaculture, commercial, municipal
	xls
	
	
	
	
	NSCB (2006) CD-ROM

	Human health
	xls
	
	
	
	
	NSCB (2006) CD-ROM

	Family planning
	xls
	
	
	
	
	NSCB (2006) CD-ROM

	Education
	xls
	
	
	
	
	NSCB (2006) CD-ROM

	Roads and bridges
	xls
	
	
	
	
	NSCB (2006) CD-ROM

	Tourism
	xls
	
	
	
	
	NSCB (2006) CD-ROM

	Telephone lines
	xls
	
	
	
	
	NSCB (2006) CD-ROM

	Vehicle registration
	xls
	
	
	
	
	NSCB (2006) CD-ROM

	Electrification
	xls
	
	
	
	
	NSCB (2006) CD-ROM


10. Animal Disease Prioritisation in the Philippines

Republic of the Philippines 

DEPARTMENT OF AGRICULTURE 

Office of the Secretary 

Elliptical Road, Diliman 

Quezon City 1100 Philippines 

Administrative Order No. 17 Series of 2004 

A. Subject: AMENDMENT TO DA·BAI NO. 12 s. 1992, 

ON THE CLASSIFICATION OF ANIMAL DISEASES 

In order to provide the basis for monitoring, prevention, control and eradication of animal diseases and in the regulation of animals, animal products and by-products, animal feeds, veterinary drugs and products, the following classification of diseases affecting animals is hereby amended: 

A. FIRST PRIORITY DISEASES - are communicable diseases which have the potential for very serious and rapid spread; are of serious socio-economic and/or public health importance, are of major importance in the international trade of animals, animal products and by-products, animal feeds, veterinary drugs and products and; are the presently priority of the government for prevention, control and eradication programs. 

Foot and Mouth disease (01, A 24, C3) Hemorrhagic septicemia 

Hog cholera 

Newcastle disease 

Rabies 

Anthrax 

Aujeszky's disease (Pseudorabies) 

Infectious Bursal disease (Gumboro disease) 

B. SECOND PRIORITY DISEASES - are communicable diseases which are considered to be of socio-economic and/or public health importance and which are significant in the international trade of animals, animal products and by-products, animal feeds, veterinary drugs and products. 

Blackleg

Bovine anaplasmosis 

Bovine babesiosis 

Bovine tuberculosts 

Brucellosis 

Fasciolosis (Liver fluke disease) 

Leptospirosis 

Pullorum disease 

Surra (Trypanosomosls) 

C. EMERGING DISEASES -- are communicable diseases which have been recently detected to be present in the country but still confined in limited areas or farms. 

Caprine arthritis/encephalitis Equine influenza 

Japanese encephalitis 

Mucosal disease/Bovine virus diarrhea Porcine dermatitis nephritis syndrome Porcine multisystemic wasting syndrome Swine influenza 

Transmissible gastroenteritis 

D.  DISEASES OF FARM CONCERN - are diseases which commonly affect farm animals and their prevention and control are of primary concern of the farm. 

1.  Hogs 

Actinobacillus pleuropneumonia 

Atrophic rhinitis 

Glasser's disease 

Porcine parvovirus 

Porcine reproductive and respiratory syndrome 

Swine erysipelas 

Swine enzootic pneumonia Swine plague 

2.  Poultry 

Avian encephalomyelitis/encephalitis 

Avian infectious bronchitis 

Avian infectious laryngotracheitis 

Avian leukosis 

Avian malaria (Leucocytozoonosis) 

Bacillary white diarrhea 

Chlamydiosis 

Coccidiosis 

Egg drop syndrome 

Fowl cholera (Avian pasteurellosis) 

Fowl pox 

Infectious chicken anemia 

Infectious coryza 

Malabsorption syndrome 

Marek's disease 

Swollen head syndrome 

Viral arthritis (Tenosynovitis) 

3. Sheep/Goat 

Orf 

Parasitic gastroenteritis 

4. Multi-species 

Colibacillosis 

Ephemeral fever 

Keratoconjunctivitis (Pink eye disease) 

Mycoplasmosis 

Mycotoxicosis 

Salmonellosis 

Screw-worm (Myiasis) 

E. DISEASES OF COMPANION ANIMALS - are diseases of horses, dogs, cats and exotic pets which are present in the country.

Canine babesiosis (Babesia canis) 

Canine coronavirus enteritis 

Canine distemper 

Canine herpes 

Canine infectious hepatitis 

Canine parainfluenza 

Canine parvovirus enteritis 

Erlichiosis 

Equine infectious anemia 

Feline herpes 

Feline panleukopenia 

Glanders 

Psittacosis/Om ithosis 

Strangles 

F.  EXOTIC DISEASES - are diseases of animals which are not and no longer present in the country based on the classification of OlE listings of diseases, A and B. 

African swine fever 

Avian influenza 

Bluetongue 

Bovine spongiform encephalopathy 

Contagious bovine pleuropneumonia 

Dermatophilosis 

Duck virus enteritis 

Duck virus hepatitis 

Enterovirus encephalomyelitis (Teschen disease) 

Enzootic abortion of ewes 

Enzootic bovine leukosis 

Equine viral arteritis 

Foot and mouth disease (Asia1, SAT1, SAT2, SAT3) 

Heartwater disease 

Horse pox 

Infectious bovine rhinotracheitis 

Johne's disease (Paratuberculosis) 

Lumpy skin disease 

Maedi-visna 

Nairobi sheep disease 

Nipah virus 

Pestes des petits ruminants 

Pulmonary adenomatosis Q fever 

Rinderpest 

Scrapie 

Venezuelan equine encephalomyelitis 

Vesicular exanthema 

Vesicular stomatitis 

Step 1: Convert all data maps to images with same pixel size (resolution);


Step 2: Extract values for observed values of livestock density, and for each predictor variable at fixed sample points (hatched squares);


Step 3: Calculate a regression equation of the form: 


Observed density = Constant + A * (Predictor 1) + B * (Predictor 2) + ... 


Step 4: Providing the equation is statistically significant (i.e. reliable), apply the right hand side of the equation to all pixels in the predictor variable images to produce the predicted density.


Step 5: Repeat the process for each of a series of analysis zones (e.g. ecozones)





A * (Predictor 1)





B * (Predictor 2)  ...





Observed density





+





=








� The Bidirectional Reflectance Distribution Function (BRDF) gives the reflectance of a target as a function of illumination geometry and viewing geometry. The BRDF depends on wavelength and is determined by the structural and optical properties of the surface, such as shadow-casting, mutiple scattering, mutual shadowing, transmission, reflection, absorption and emission by surface elements, facet orientation distribution and facet density. BRDF is needed in remote sensing for the correction of view and illumination angle effects (for example in image standardization and mosaicing), for deriving albedo, for land cover classification, for cloud detection, for atmospheric correction and other applications. 
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