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The incidence of bovine tuberculosis (BTB)

is increasing in Great Britain, exacerbated

by the temporary suspension of herd

testing in 2001 for fear of spreading the

much more contagious foot and mouth

disease. The transmission pathways of 

BTB remain poorly understood. Current

hypotheses suggest the disease is

introduced into susceptible herds from a

wildlife reservoir (principally the Eurasian

Badger) and/or from cattle purchased from

infected areas, while the role of climatic

factors in transmission has generally been

ignored. Here, we show how remotely

sensed satellite data, which provide good

indicators of a variety of climatic factors,

can be used to describe the distribution of

BTB in Great Britain in 1997, and suggest

how such data could be used to produce

BTB risk maps for the future.

Published online: 23 August 2002

Bovine tuberculosis (BTB), which is
caused by Mycobacterium bovis, was once
widespread in Great Britain, but is now
focused in south-west England,
south-west Wales and parts of the
Midlands (Fig. 1). Scattered cases occur
throughout the mainland and outbreaks
have been reported recently in mid-Wales.
The distribution of BTB is routinely
monitored by the Department for
Environment, Food and Rural Affairs
(DEFRA), although a coherent
management strategy has yet to be
framed within a descriptive model of
disease transmission. The development 
of such models is hampered by the fact
that our knowledge of the M. bovis
transmission pathways is incomplete. 
The biology of the host undoubtedly 
plays a major role in transmission and
although the effect of climate on the
natural history of the pathogen in the field
is largely unknown, it is likely to have a
significant influence on the disease [1].
Potential correlations between climatic
factors and the occurrence of BTB, which
so far have not been investigated
extensively, can be obtained at a fairly fine

spatial resolution (Box 1) from satellite
observations [2,3]. Satellite data have
already been used to describe the
distribution and abundance of several
diseases in many countries worldwide,
including malaria [4,5], schistosomiasis [6],
trypanosomiasis [7–9], tick-borne 
diseases [10], West Nile Virus in the 
USA [11], the vectors of African horse
sickness in South Africa [12] and blue
tongue in the Mediterranean basin [13].
Given these successes with vector-borne
or indirectly transmitted diseases, we
assessed the use of the same approach to
describe the distribution of BTB in 
Great Britain, as a potential complement
to existing monitoring procedures. 

Data, images and image processing

BTB data were derived from the 
VETNET database for the period
1988–1997. These are the geo-referenced
BTB monitoring data for the whole of

mainland Great Britain, covering 
>80 000 holdings annually, and thus
provide a reliable indication of BTB
distribution. Analyses were restricted to
the presence or absence of the disease
within a herd as it proved impossible to
estimate incidence or prevalence reliably
from the database. Only data for
1997 were used, giving approximately
500 infected sites. Disease data are often
spatially clustered, which reduces the
statistical significance of distribution
models. A subset of the data from the
southern Midlands was therefore
examined for such spatial
autocorrelation, which appeared to be
minimal beyond distances of about 2 or
3 km. This suggested that autocorrelation
in the BTB data would be reduced by
amalgamating the records into spatial
units of >3 km, so the data indicating the
presence or absence of BTB were
aggregated into 5 km grid squares before
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Fig. 1. Predicted distribution of bovine tuberculosis (BTB) in southwest Great Britain, 1997. The inset shows the
recorded presence.



analysis. A broad range of anthropogenic,
biological, demographic, climatic and
topographic variables was assessed as
predictors (Box 1). 

Data extraction and model construction

All predictor data were converted to
0.01 degree resolution and stored in
IDRISI (geographical analysis software;
http://www.idrisi.clarku.edu) raster
images in latitude/longitude format. From
each image, data values were extracted for
a series of data points corresponding to
BTB-positive and BTB-negative locations
for 1997. After filtering to remove any

records with incomplete data, and then
adjusting absence sample sizes to give
approximately equal numbers of
observations of positive and negative
sites, the data were subjected to step-wise
forward logistic regression analysis using
the Statistical Package for the Social
Sciences (SPSS; http://www.spss.com) to
establish the relationship between the
predictor variables and the presence or
absence of disease. Although this method
partially compensates for correlations
between predictor variables, possible
co-linearity means that the precise order
in which variables are included in the

model should be treated with some
caution. The output of logistic regression
models, as widely used in distribution
studies [14], is a prediction of the
probability of presence for each sample
site. The threshold probability that most
accurately distinguishes presence from
absence in logistic regression tends to vary
with the relative numbers of presence and
absence observations used; with equal
sample sizes, a threshold of 0.5 is likely to
provide a reasonable balance between
minimising the prediction of false
negatives and false positives, and is thus
appropriate for an exploratory model such
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The predictor variables used are summarized
in Table I. Remotely sensed data were derived
from daily 1 km resolution imagery of the
Advanced Very High Resolution Radiometer
(AVHRR) on the National Oceanographic and
Atmospheric Administration satellite and
processed by the Pathfinder program [a,b] 
to remove cloud and other atmospheric
contamination. Data are available only within
the period 1992/3–1995/6, and so were
combined into monthly averages to provide
complete temporal coverage of a nominal
calendar year, then further processed to
produce variables additional to the original
imagery (Table 1) using the algorithms
described in [c].

The monthly data were subjected to
temporal Fourier processing, known to provide
descriptive and explanatory variables
associated with distributions of vectors and
diseases. These describe the seasonal cycle in
terms of sinusoidal annual, bi-annual and
tri-annual components, each with an amplitude
and phase (i.e. timing of the first peak) [d].
Additional data layers were produced showing
the Fourier-fitted (i.e. essentially smoothed)

maximum and minimum signal value and the
contribution of each of the annual, bi-annual
and tri-annual cycles to the overall variance of
the seasonal signal. 

A variety of land-use and land-cover data
were extracted from the Countryside
Information System (CIS) CD-ROM. These data
record the percentage cover of each land-use
class at 1 km resolution. Overall map accuracy
is quoted as 80–85%.

Cattle figures for 1999 were obtained
aggregated by administrative areas for
Scotland and Wales, and by 20 km grid for
England. These data had been screened to
ensure confidentiality, but were combined to
use as an indicative measure of cattle density.

Publicly available badger data are patchy at
best. The most complete information, from the
CIS, contains 1 km resolution information on
distribution from the Mammal Society, the
Biological Records Centre and the British Deer
Society surveys between 1965 and 1990. 
Even aggregated to 10 km, these data appear
unlikely to provide a very realistic distribution
but, in the absence of any alternative, were
included in the predictor data set.
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Box 1. Environmental predictor data used in the analyses

Table I. Predictor variables

Generic type Variables Refs

Anthropogenic Distance to roads and city lightsa [e]
Demographic Human population levela,d

Percentage land Tilled areab; deciduous woodlandb; coniferous woodlandb; [f–h]
  cover   managed grassland; urban landb; suburban landb; bare groundb;

  waterb; normalised deviation vegetation index (NDVI)a,c

Geographical Longitudea,c, latitudea,c

Topographical Elevationa,c [i]
Temperature Air temperaturea,c; land surface temperaturea,c; middle infra-reda,c [c,g,j–l]
Water and moisture Vapour pressure deficita,c (VPD); distance to riversa,e; potential [c,g,j]

  evapotranspirationa

Zoological Cattle densityb; proportion dairy cattleb; herd sizeb; badger record
  densityb,f; distance to badger presenceb

aGlobal data (available for Europe, Ireland and the UK).
bGB-specific data.
cRemotely sensed variables.
dObtained from University of California at Berkeley provided by FAO at 5 minute resolution.
eDerived from the USGS EROS data centre HYDRO1k data archive at http://edcdaac.usgs.gov/gtopo30/hydro/
fSome 19th century literature records are included, and some records from museum collections. See [m].



as this. The accuracy of the various logistic
regression models was assessed using the
Kappa index of agreement [15], which
ranges from 0 (no predictive skill) to
1 (perfect prediction), with values
>0.4 regarded as acceptable and >0.75 as
excellent [16]. 

Once the best models had been
determined, they were applied to the full
1 km resolution imagery to produce output
maps predicting the probability of BTB
presence throughout Great Britain.

Results

Three models of the presence of BTB in
Great Britain in 1997 were developed
(Table 1). The first used all the GB-specific
variables and the satellite variables,
elevation data and population distribution
data. The acceptable fit of this model
(Kappa = 0.68) (Fig. 1) predicts the major
observed foci in Wales, the south
Midlands, Devon and Cornwall, as well as
some of the smaller outbreaks in the north
Midlands. There are, however, areas of
false positive predictions along the
Menai Straits in North Wales and the
northern Marches, which might indicate
areas that are environmentally suitable
for BTB and so ‘potentially at risk’.

The second model was similar to the
first, but removed all GB-specific
variables – and thus most of the land-use
and agricultural data (Box 1) – from the
predictor set (leaving essentially only the

satellite, elevation and population
distribution data), with a view to 
applying the results to other European
countries. The satisfactory predictions
(Kappa = 0.63) suggest that reliable
models of BTB presence could be
constructed using generic data sets for
other countries, although we caution 
that the model parameters will almost
certainly differ between broad
geographical regions.

The selected key predictors of these
first two models (Table 1) suggest that
atmospheric dryness [indicated by vapour
pressure deficit (VPD)] and thermal
(middle infra-red and air temperature)
variables, particularly their timing and
variability, are associated with areas at
high risk of BTB; briefly, the VPD mean
values are lower and reach a peak later 
in the year, and both VPD and air
temperature are less variable, in
BTB-positive than in BTB-negative areas.

The third model was similar to the
first, but also incorporated proximity to
BTB presence in 1995 (taken as indicating
past risk of infection). This did not
improve the fit of the model relative to the
first model (Kappa = 0.67), even though 
it used more of the available variables, 
but had the important effect of shifting
emphasis away from purely climatic
variables towards the biotic variables 
such as cattle, badger and human density.
The better fit of the first model suggests

that the risk of BTB can be predicted
satisfactorily using only intrinsic climatic
and environmental variables with no
information on previous infections
(Table 1, Box 1).

Discussion and conclusions

This preliminary study demonstrates
conclusively that environmental data,
including Fourier-processed, multi-
temporal satellite data, can be used to
describe the distribution of BTB in 
Great Britain with reasonable accuracy.
Such predictions could be used to adjust
the targeting and intensity of existing
conventional monitoring programmes; 
to estimate distributions (for this and
similar diseases) where monitoring is
sparse; and could feasibly be developed to
track or even predict changes in the
distribution of BTB over time. 

An important question arising from
this study, however, is whether it is the
disease, the cattle or the distribution of
farmlands highly suited to cattle
production (and so perhaps BTB) that is
being modelled. The last two suggestions
could be ruled out by expressing the
BTB data as disease incidence or
prevalence, but unfortunately the herd
size data were somewhat inconsistent.
The available cattle data suggest that the
BTB risk map shown here is sufficiently
different from the cattle abundance map
to confirm that we have captured some
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Table 1. Logistic regression summary statistics and first ten predictors for models of BTB in 1997
a

Statistic Model 1 Model 2 Model 3

Variables included in analysis All Only global variables All
Distance to BTB in 1995 No No Yes
Variables available to model 96 80 97
Variables included in model 54 70 85
Correct absence % 83.67 82.05 85.00
Correct presence % 84.76 81.11 82.80
Overall correct % 84.15 81.64 83.90
Kappa 0.68 0.63 0.67
Predictor 1 VPD P2

b,d
VPD P2

b,d Distance to BTB in 1995
Predictor 2 Longitude Longitude VPD mind

Predictor 3 VPD D/V1
b,d VPD mean Cattle density

Predictor 4 VPD P1
b,d

VPD P1
b,d Badger presence (10 km)

Predictor 5 Air temperature A1
b,c

VPD variance
b,d Human population density

Predictor 6 Air temperature rangec
Middle infra-red P3

b,c Longitude
Predictor 7 Cattle density Air temperature A1

b,c Potential evapotranspirationd

Predictor 8 Air temperature A3
b,c

Air temperature range
b,c

VPD P1
b,d

Predictor 9 Middle infra-red P3
b,c Distance to roads Badger (distance)

Predictor 10 VPD meand
Air temperature A3

b,c
VPD A3

b,d

aAbbreviations: 0, 1, 2 and 3 refer to the Fourier-fitted, annual, bi-annual and tri-annual cycles; A, amplitude; BTB, bovine tuberculosis; D/V, proportion of total variance
associated with each harmonic/total variance; P, phase; VPD, vapour pressure deficit.
bFourier timing and/or seasonality variables, highlighted in bold.
cTemperature variables.
dWater/moisture variables.



TRENDS in Microbiology  Vol.10 No.10  October 2002

http://tim.trends.com     

444 Research Update

independent factor in the risk of BTB. 
As more data are made available,
especially from the period of recent
increase in BTB in Great Britain, 
and with more complete cattle data, 
it should become easier to model 
disease prevalence.

Temperature- and moisture-related
climatic indicators, especially their timing
and variability, appear to be more
important predictors of BTB in England
and Wales than do variables related to
vegetation or land-use. The occurrence of
BTB is therefore likely to be closely linked
to the seasonality and sequence of
ecological events during the year, and
probably sensitive to changes in this
seasonality from one year to the next. 
This aspect of epizootiology is rarely
incorporated into statistical models of
disease distribution and points to the type
of process-based biological model that will
be most appropriate for BTB.

Satellite data therefore help us
describe the distribution of BTB in
Great Britain, to begin to understand the
climatic conditions conducive to disease
persistence over time, and to predict areas
suitable for BTB transmission that are not
yet experiencing the disease. The arrival
of BTB in a new area by inward movement 
of infected animals, or from possible
reservoir hosts, is almost impossible to
anticipate, although routine monitoring
should pick up both sorts of events.
Nevertheless, after its appearance in 
any area, its likely persistence and even
the intensity of infection can be 
predicted using the sorts of analyses
presented here. The global coverage of
such satellite data provides an
opportunity for both developed and
developing countries to monitor the
spread of an increasing variety of diseases
through space and time. 
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